

Department of Information Technology Page 1

Manual & AssignmentManual & AssignmentManual & AssignmentManual & Assignment

DATABASE MANAGEMENT DATABASE MANAGEMENT DATABASE MANAGEMENT DATABASE MANAGEMENT
SYSTEM LAB SYSTEM LAB SYSTEM LAB SYSTEM LAB

IT 691IT 691IT 691IT 691

IT 3IT 3IT 3IT 3rdrdrdrd Year 6Year 6Year 6Year 6thththth SemesterSemesterSemesterSemester

Department of Information Technology Page 2

Oracle SQL Tutorial Contents

[1] Introduction to Databases
[2] CODD'S Rules
[3] Data types and Creating Tables
[4] Oracle SQL SELECT Statement
[5] Formatting Output in SQL * Plus
[6] UNION, INTERSECT, MINUS Operators and Sorting Query Result
[7] Oracle SQL Functions

Number Functions (Math Functions)
Character Functions
Miscellaneous Functions
Aggregate Functions
Date and Time Functions

[8] Oracle Join Queries, (Inner Join, Outer Join, Self Join)
[9] GROUP BY Queries, SUB Queries, CUBE, ROLLUP Functions, WITH, CASE Operators
[10] Oracle Data Manipulation Language (INSERT, UPDATE, DELETE, INSERT ALL, MERGE)
[11] Oracle Data Definition Language (CREATE, ALTER, DROP, TRUNCATE, RENAME)
[12] Oracle Transaction Control Language (COMMIT, ROLLBACK,SAVEPOINT)
[13] Data Control Language (GRANT, REVOKE)
[14] Oracle Integrity Constraints (PRIMARY KEY, NOT NULL, CHECK, FOREIGN KEY,

UNIQUE)
DEFAULT Values
Dropping Constraints
Disabling and Enabling Constraints
Differing Constraints Check
Viewing Information about Constraints

[15] Oracle Date Operators, Functions
[16] Managing Oracle Views
[17] Managing Oracle Sequences
[18] Managing Oracle Synonyms
[19] Managing Indexes and Clusters
[20] Introduction to PL/SQL
[21] What is so great about PL/SQL anyway?
[22] PL/SQL Architecture

a. Overview of PL/SQL Elements Blocks
b. Variables and Constants
c. Using SQL in PL/SQL
d. Branching and Conditional Control
e. Looping Statements
f. GOTO
g. Procedures, Functions and Packages
h. Records
i. Object Types
j. Collections
k. Triggers
l. Error Handling

Department of Information Technology Page 3

Introduction to Databases

DATABASE

A database is a collection of Data (Information). Examples of databases, which we use in our daily life,
are an Attendance Register, Telephone Directory, and Muster Rule.

Database Management System (DBMS): A database management system is a collection of programs
written to manage a database. That is, it acts as an interface between user and database.

RDBMS

A Database Management System based on Relational Data Model is known as Relational Database

Management System (RDBMS).

 Relational Data Model was developed by Dr. E.F. CODD. He developed the relational data model by
taking the concept from Relational Algebra in June - 1970.

Relational Data Model has some 12 Rules which are named after Codd as Codd Rules. According to
Codd a package can be called as RDBMS only if it satisfies the Codd Rules.

ORACLE

Oracle is an Object-Relational Database Management System. It is the leading RDBMS vendor
worldwide. Nearly half of RDBMS worldwide market is owned by Oracle.

ORACLE DATABASE

Every Oracle Database Contains Logical and Physical Structures. Logical Structures are table spaces,
Schema objects, extents and segments. Physical Structures are Data files, Redo Log Files, Control File.

A database is divided into logical storage units called table spaces, which group related logical structures
together. Each Table space in turn consists of one are more data files.

Department of Information Technology Page 4

In relational database system all the information is stored in form of tables. A table consists of rows and
columns

All the tables and other objects in Oracle are stored in table space logically, but physically they are
stored in the data files associated with the table space.

Every Oracle database has a set of two or more redo log files. The set of redo log files for a database is
collectively known as the database's redo log. A redo log is made up of redo entries (also called redo
records).

The primary function of the redo log is to record all changes made to data. If a failure prevents modified
data from being permanently written to the data files, the changes can be obtained from the redo log so
work is never lost.

Every Oracle database has a control file. A control file contains the database name and locations of all
datafiles and redoes log files.

Every Oracle database also has a Parameter File. Parameter file contains the name of the Database,
Memory Settings and Location of Control file.

CODD’S RULES

1. Information Rule: All information in a relational database including table names, column

names are represented by values in tables. This simple view of data speeds design and learning.
User productivity is improved since knowledge of only one language is necessary to access all
data such as description of the table and attribute definitions, integrity constraints. Action can be
taken when the constraints are violated. Access to data can be restricted. All these information
are also stored in tables.

2. Guaranteed Access Rule: Every piece of data in a relational database can be accessed by

using combination of a table name, a primary key value that identifies the row and column name

which identified a cell. User productivity is improved since there is no need to resort to using
physical pointers addresses. Provides data independence. Possible to retrieve each individual

Department of Information Technology Page 5

piece of data stored in a relational database by specifying the name of the table in which it is
stored, the column and primary key which identified the cell in which it is stored.

3. Systematic Treatment of Nulls Rule: The RDBMS handles records that have unknown or

inapplicable values in a pre-defined fashion. Also, the RDBMS distinguishes between zeros,
blanks and nulls in the records hand handles such values in a consistent manner that produces
correct answers, comparisons and calculations. Through the set of rules for handling nulls, users
can distinguish results of the queries that involve nulls, zeros and blanks. Even though the rule
doesn’t specify what should be done in the case of nulls it specifies that there should be a
consistent policy in the treatment of nulls.

4. Active On-line catalog based on the relational model: The description of a database and in its

contents is database tables and therefore can be queried on-line via the data manipulation

language. The database administrator’s productivity is improved since the changes and additions
to the catalog can be done with the same commands that are used to access any other table. All
queries and reports can also be done as any other table.

5. Comprehensive Data Sub-language Rule: A RDBMS may support several languages. But at

least one of them should allow user to do all of the following: define tables and views, query and

update the data, set integrity constraints, set authorizations and define transactions. User
productivity is improved since there is just one approach that can be used for all database
operations. In a multi-user environment the user does not have to worry about the data integrity
things, which will be taken care by the system. Also, only users with proper authorization will be
able to access data.

6. View Updating Rule: Any view that is theoretically updateable can be updated using the

RDBMS. Data consistency is ensured since the changes made in the view are transmitted to the
base table and vice-versa.

7. High-Level Insert, Update and Delete: The RDBMS supports insertions, updation and deletion

at a table level. The performance is improved since the commands act on a set of records rather
than one record at a time.

8. Physical Data Independence: The execution of adhoc requests and application programs is not

affected by changes in the physical data access and storage methods. Database administrators
can make changes to the physical access and storage method which improve performance and do
not require changes in the application programs or requests. Here the user specified what he
wants an need not worry about how the data is obtained.

9. Logical Data Independence: Logical changes in tables and views such adding/deleting

columns or changing fields lengths need not necessitate modifications in the programs or in the

format of adhoc requests. The database can change and grow to reflect changes in reality without
requiring the user intervention or changes in the applications. For example, adding attribute or
column to the base table should not disrupt the programs or the interactive command that have
no use for the new attribute.

Department of Information Technology Page 6

10. Integrity Independence: Like table/view definition, integrity constraints are stored in the on-

line catalog and can therefore be changed without necessitating changes in the application

programs. Integrity constraints specific to a particular RDB must be definable in the relational
data sub-language and storable in the catalog. At least the Entity integrity and referential
integrity must be supported.

11. Distribution Independence: Application programs and adhoc requests are not affected by

change in the distribution of physical data. Improved systems reliability since application
programs will work even if the programs and data are moved in different sites.

12. No subversion Rule: If the RDBMS has a language that accesses the information of a record at

a time, this language should not be used to bypass the integrity constraints. This is necessary for
data integrity.

According to Dr. Edgar. F. Codd, a relational database management system must be able to manage the
database entirely through its relational capabilities.

Data types and Creating Tables

A table is the data structure that holds data in a relational database. A table is composed of rows and
columns.

A table in Oracle Ver. 7.3 can have maximum 255 Columns and in Oracle Ver. 8 and above a table can
have maximum 1000 columns. Number of rows in a table is unlimited in all the versions.

A table can represent a single entity that you want to track within your system. This type of a table could
represent a list of the employees within your organization, or the orders placed for your company's
products.

A table can also represent a relationship between two entities. This type of a table could portray the
association between employees and their job skills, or the relationship of products to orders. Within the
tables, foreign keys are used to represent relationships.

Although some well designed tables could represent both an entity and describe the relationship between
that entity and another entity, most tables should represent either an entity or a relationship.

The following sessions explain how to create, alter, and drop tables. Some simple guidelines to follow
when managing tables in your database are included.

 Designing Tables

Consider the following guidelines when designing your tables:

• Use descriptive names for tables, columns, indexes, and clusters.
• Table Names, Columns Names can contain maximum of 30 characters and they should start with an

alphabet.

Department of Information Technology Page 7

• Be consistent in abbreviations and in the use of singular and plural forms of table names and columns.
• Select the appropriate data type for each column.
• Arrange columns that can contain NULL Values in the last, to save storage space.

Before creating a table, you should also determine whether to use integrity constraints. Integrity
constraints can be defined on the columns of a table to enforce the business rules of your database
automatically.

Before creating a Table you also have to decide what type of data each column can contain. This is
known as data type. Let’s discuss what data types are available in Oracle.

Data types

A data type associates a fixed set of properties with the values that can be used in a column of a table or
in an argument of a procedure or function. These properties cause Oracle to treat values of one data type
differently from values of another data type. For example, Oracle can add values of NUMBER data
type, but not values of RAW data type.

Oracle supplies the following built-in data types:

Character data types

• CHAR
• NCHAR
• VARCHAR2 and VARCHAR
• NVARCHAR2
• CLOB
• NCLOB
• LONG

Numeric data types

• NUMBER

Time and date data types

• DATE
• INTERVAL DAY TO SECOND
• INTERVAL YEAR TO MONTH
• TIMESTAMP
• TIMESTAMP WITH TIME ZONE
• TIMESTAMP WITH LOCAL TIME ZONE

Binary data types

• BLOB

Department of Information Technology Page 8

• BFILE
• RAW
• LONG RAW

Another data type, ROWID, is used for values in the ROWID pseudo column, which represents the
unique address of each row in a table.

The following table summarizes the information about each Oracle built-in data type.

Data type Description Column Length and Default

CHAR (size [BYTE |
CHAR])

Fixed-length character data of
length size bytes or characters.

Fixed for every row in the table (with trailing
blanks); maximum size is 2000 bytes per row,
default size is 1 byte per row. Consider the
character set (single-byte or multi byte) before
setting size.

VARCHAR2 (size
[BYTE | CHAR])

Variable-length character data,
with maximum length size bytes
or characters.

Variable for each row, up to 4000 bytes per
row. Consider the character set (single-byte or
multi byte) before setting size. A maximum size
must be specified.

NCHAR (size) Fixed-length Unicode character
data of length size characters.

Fixed for every row in the table (with trailing
blanks). Column size is the number of
characters. (The number of bytes is 2 times this
number for the AL16UTF16 encoding and 3
times this number for the UTF8 encoding.) The
upper limit is 2000 bytes per row. Default is 1
character.

NVARCHAR2 (size) Variable-length Unicode
character data of length size
characters. A maximum size
must be specified.

Variable for each row. Column size is the
number of characters. (The number of bytes
may be up to 2 times this number for a the
AL16UTF16 encoding and 3 times this number
for the UTF8 encoding.) The upper limit is
4000 bytes per row. Default is 1 character.

CLOB Single-byte character data Up to 232 - 1 bytes, or 4 gigabytes.

NCLOB Unicode national character set
(NCHAR) data.

Up to 232 - 1 bytes, or 4 gigabytes.

LONG Variable-length character data. Variable for each row in the table, up to 232 - 1
bytes, or 2 gigabytes, per row. Provided for
backward compatibility.

NUMBER (p, s) Variable-length numeric data.
Maximum precision p and/or
scale s is 38.

Variable for each row. The maximum space
required for a given column is 21 bytes per
row.

DATE Fixed-length date and time data,
ranging from Jan. 1, 4712
B.C.E. to Dec. 31, 4712 C.E.

Fixed at 7 bytes for each row in the table.
Default format is a string (such as DD-MON-
RR) specified by the NLS_DATE_FORMAT
parameter.

INTERVAL YEAR
(precision) TO

A period of time, represented as
years and months. The precision

Fixed at 5 bytes.

Department of Information Technology Page 9

MONTH value specifies the number of
digits in the YEAR field of the
date. The precision can be from
0 to 9, and defaults to 2 for
years.

INTERVAL DAY
(precision) TO
SECOND (precision)

A period of time, represented as
days, hours, minutes, and
seconds. The precision values
specify the number of digits in
the DAY and the fractional
SECOND fields of the date. The
precision can be from 0 to 9, and
defaults to 2 for days and 6 for
seconds.

Fixed at 11 bytes.

TIMESTAMP
(precision)

A value representing a date and
time, including fractional
seconds. (The exact resolution
depends on the operating system
clock.)

The precision value specifies the
number of digits in the fractional
second part of the SECOND
date field. The precision can be
from 0 to 9, and defaults to 6

Varies from 7 to 11 bytes, depending on the
precision. The default is determined by the
NLS_TIMESTAMP_FORMAT initialization
parameter.

TIMESTAMP
(precision) WITH
TIME ZONE

A value representing a date and
time, plus an associated time
zone setting. The time zone can
be an offset from UTC, such as
'-5:0', or a region name, such as
'US/Pacific'.

Fixed at 13 bytes. The default is determined by
the NLS_TIMESTAMP_TZ_FORMAT
initialization parameter.

TIMESTAMP
(precision) WITH
LOCAL TIME ZONE

Similar to TIMESTAMP WITH
TIME ZONE, except that the
data is normalized to the
database time zone when stored,
and adjusted to match the
client's time zone when
retrieved.

Varies from 7 to 11 bytes, depending on the
precision. The default is determined by the
NLS_TIMESTAMP_FORMAT initialization
parameter.

BLOB Unstructured binary data Up to 232 - 1 bytes, or 4 gigabytes.

BFILE Binary data stored in an external
file

Up to 232 - 1 bytes, or 4 gigabytes.

RAW (size) Variable-length raw binary data

Variable for each row in the table, up to 2000
bytes per row. A maximum size must be
specified. Provided for backward compatibility.

LONG RAW Variable-length raw binary data Variable for each row in the table, up to 231 - 1
bytes, or 2 gigabytes, per row. Provided for

Department of Information Technology Page 10

backward compatibility.

ROWID Binary data representing row
addresses

Fixed at 10 bytes (extended ROWID) or 6 bytes
(restricted ROWID) for each row in the table.

Representing Character Data

Use the character data types to store alphanumeric data:

CHAR and NCHAR data types store fixed-length character strings.

VARCHAR2 and NVARCHAR2 data types store variable-length character strings. (The VARCHAR
data type is synonymous with the VARCHAR2 data type.)

NCHAR and NVARCHAR2 data types store Unicode character data only.

CLOB and NCLOB data types store single-byte and multi byte character strings of up to four gigabytes.

The LONG data type stores variable-length character strings containing up to two gigabytes, but with
many restrictions.

This data type is provided for backward compatibility with existing applications; in general, new
applications should use CLOB and NCLOB data types to store large amounts of character data, and
BLOB and BFILE to store large amounts of binary data.

When deciding which data type to use for a column that will store alphanumeric data in a table, consider
the following points of distinction:

To store data more efficiently, use the VARCHAR2 data type. The CHAR data type blank-pads and
stores trailing blanks up to a fixed column length for all column values, while the VARCHAR2 data
type does not add any extra blanks.

For example if you define empname as char(20) then if you store names like “Sami” then name will
occupy 20 bytes(4 bytes for characters “Sami” and 16 blank spaces)

And if you define empname as varchar2 (20) then if you store names like “Sami” then oracle will take 4
bytes only.

Use the CHAR data type when you require ANSI compatibility in comparison semantics (when trailing
blanks are not important in string comparisons). Use the VARCHAR2 when trailing blanks are
important in string comparisons.

Department of Information Technology Page 11

The CHAR and VARCHAR2 data types are and will always be fully supported. At this time, the
VARCHAR data type automatically corresponds to the VARCHAR2 data type and is reserved for future
use.

Representing Numeric Data

Use the NUMBER data type to store real numbers in a fixed-point or floating-point format. Numbers
using this data type are guaranteed to be portable among different Oracle platforms, and offer up to 38
decimal digits of precision. You can store positive and negative numbers of magnitude 1 x 10-130
through 9.99 x10125, as well as zero, in a NUMBER column.

You can specify that a column contains a floating-point number, for example:

distance NUMBER

Or, you can specify a precision (total number of digits) and scale (number of digits to right of decimal
point):

price NUMBER (8, 2)

Although not required, specifying precision and scale helps to identify bad input values. If a precision is
not specified, the column stores values as given. The following table shows examples of how data
different scale factors affect storage.

Input Data Specified As Stored As

4,751,132.79 NUMBER 4751132.79

4,751,132.79 NUMBER (9) 4751133

4,751,132.79 NUMBER (9,2) 4751132.79

4,751,132.79 NUMBER (9,1) 4751132.7

4,751,132.79 NUMBER (6) (not accepted, exceeds precision)

4,751,132.79 NUMBER (7, -2) 4,751100

Department of Information Technology Page 12

Representing Date and Time Data

Use the DATE data type to store point-in-time values (dates and times) in a table. The DATE data type
stores the century, year, month, day, hours, minutes, and seconds.

Use the TIMESTAMP data type to store precise values, down to fractional seconds. For example, an
application that must decide which of two events occurred first might use TIMESTAMP. An application
that needs to specify the time for a job to execute might use DATE.

Date Format

For input and output of dates, the standard Oracle default date format is DD-MON-RR. For example:

'13-NOV-1992'

To change this default date format on an instance-wide basis, use the NLS_DATE_FORMAT
parameter. To change the format during a session, use the ALTER SESSION statement. To enter dates
that are not in the current default date format, use the TO_DATE function with a format mask. For
example:

TO_DATE ('November 13, 1992', 'MONTH DD, YYYY')

Be careful using a date format like DD-MON-YY. The YY indicates the year in the current century. For
example, 31-DEC-92 is December 31, 2092, not 1992 as you might expect. If you want to indicate years
in any century other than the current one, use a different format mask, such as the default RR.

Time Format

Time is stored in 24-hour format, HH24:MI:SS. By default, the time in a date field is 12:00:00 A.M.
(midnight) if no time portion is entered. In a time-only entry, the date portion defaults to the first day of
the current month. To enter the time portion of a date, use the TO_DATE function with a format mask
indicating the time portion, as in:

INSERT INTO Birthdays_tab (bname, bday) VALUES ('ANNIE',TO_DATE('13-NOV-92 10:56
A.M.','DD-MON-YY HH:MI A.M.'));

Creating Tables in Oracle

Once you have designed the table and decided about data types use the following SQL command to
create a table.

For example, the following statement creates a table named Emp.

Department of Information Technology Page 13

CREATE TABLE Emp (
 Empno NUMBER(5),
 Ename VARCHAR2(15),
 Hiredate DATE,
 Sal NUMBER(7,2)
);

To insert rows in the table you can use SQL INSERT command.

For example the following statement creates a row in the above table.

SQL> insert into emp values (101,’Sami’,3400);

To insert rows continuously in SQL Plus you can give the following command.

SQL> insert into emp values (&empno,’&name’,&sal);

These &Empno, &name and &sal are known as substitution variables. That is SQLPlus will prompt you
for these values and then rewrites the statement with supplied values.

To see the rows you have inserted give the following command.

SQL> Select * from emp;

To see the structure of the table i.e. column names and their data types and widths. Give the following
command.

SQL> desc emp

To see how many tables is in your schema give the following command.

SQL> select * from cat;

or

SQL> select * from tab;

Oracle SQL SELECT Statement

Use a SELECT statement or sub query to retrieve data from one or more tables, object tables, views,
object views, or materialized views

For example to retrieve all rows from emp table.

SQL> select empno, ename, sal from emp;

Department of Information Technology Page 14

 Or (if you want to see all the columns values

You can also give * which means all columns)

SQL> select * from emp;

If you want to see only employee names and their salaries then you can type the following statement

SQL> select name, sal from emp;

Filtering Information using Where Conditions

You can filter information using where conditions like suppose you want to see only those employees
whose salary is above 5000 then you can type the following query with where condition.

SQL>select * from emp where sal > 5000;

To see those employees whose salary is less than 5000 then the query will be

SQL> select * from emp where sal < 5000;

Logical Conditions

A logical condition combines the results of two component conditions to produce a single result based
on them or to invert the result of a single condition. Table below lists logical conditions.

Condition Operation Example

NOT
Returns TRUE if the following condition is FALSE.
Returns FALSE if it is TRUE. If it is UNKNOWN, it
remains UNKNOWN.

SELECT * FROM emp WHERE NOT
(sal IS NULL);

SELECT * FROM emp WHERE NOT
(salary BETWEEN 1000 AND 2000);

AND
Returns TRUE if both component conditions are
TRUE. Returns FALSE if either is FALSE.
Otherwise returns UNKNOWN.

SELECT * FROM employees WHERE
ename ='SAMI' AND sal=3000;

OR
Returns TRUE if either component condition is
TRUE. Returns FALSE if both are FALSE.
Otherwise returns UNKNOWN.

SELECT * FROM emp WHERE ename
= 'SAMI' OR sal >= 1000;

Department of Information Technology Page 15

Membership Conditions

A membership condition tests for membership in a list or sub query

The following table lists the membership conditions.

Condition Operation Example

IN
"Equal to any member of" test.
Equivalent to "= ANY".

SELECT * FROM emp WHERE deptno IN
(10,20);

SELECT * FROM emp WHERE deptno IN
(SELECT deptno FROM dept WHERE
city=’HYD’)

NOT IN
Equivalent to "!=ALL". Evaluates to
FALSE if any member of the set is
NULL.

SELECT * FROM emp WHERE ename NOT IN
('SCOTT', 'SMITH');

Null Conditions

A NULL condition tests for nulls.

What is null?

If a column is empty or no value has been inserted in it then it is called null. Remember 0 is not null and
blank string ‘ ’ is also not null.

The following example lists the null conditions.

Condition Operation Example

IS [NOT]

NULL

Tests for nulls. This is the only condition that you should use to test for
nulls.

SELECT ename
FROM emp
WHERE deptno
IS NULL;

SELECT *
FROM emp
WHERE ename
IS NOT NULL;

Department of Information Technology Page 16

 EXISTS Conditions

An EXISTS condition tests for existence of rows in a sub query.

The following example shows the EXISTS condition.

Condition Operation Example

EXISTS

TRUE if a subquery returns at least one
row.

SELECT deptno FROM dept d WHERE
EXISTS

(SELECT * FROM emp e WHERE d.deptno =
e.deptno);

LIKE Conditions

The LIKE conditions specify a test involving pattern matching. Whereas the equality operator (=)
exactly matches one character value to another, the LIKE conditions match a portion of one character
value to another by searching the first value for the pattern specified by the second. LIKE calculates
strings using characters as defined by the input character set.

For example you want to see all employees whose name starts with S char. Then you can use LIKE
condition as follows

SQL> select * from emp where ename like ‘S%’ ;

Similarly you want to see all employees whose name ends with “d”

SQL>select * from emp where ename like ‘%d’;

You want to see all employees whose name starts with ‘A’ and ends with ‘d’ like ‘Abid’, ’Alfred’,
’Arnold’.

SQL>select * from emp where ename like ‘A%d’;

You want to see those employees whose name contains character ‘a’ anywhere in the string.

SQL> select * from emp where ename like ‘%a%’;

To see those employees whose name contains ‘a’ in second position.

SQL>select * from emp where ename like ‘_a%’;

Department of Information Technology Page 17

To see those employees whose name contains ‘a’ as last second character.

SQL>select * from emp where ename like ‘%a_’;

To see those employees whose name contain ‘%’ sign. i.e. ‘%’ sign has to be used as literal not as wild
char.

SQL> select * from emp where ename like ‘%\%%’ escape ‘\’;

Department of Information Technology Page 18

Formatting Output in Oracle SQL * Plus

Simple and useful hints for formatting output in SQL*Plus

While using Oracle SQL*Plus for interacting with the database you must have many times seen
unstructured output for SQL queries. i.e. the output is hard to interpret.

Like for example if you give a query like this

 SQL> select * from all users;

You will get a output like this

You can easily structured the output by adjusting the line size and formatting the column by typing the
following commands

SQL> set linesize 100
SQL> col username format a30

Department of Information Technology Page 19

And then again give the same query; you will see the output in well structured format as shown below

Department of Information Technology Page 20

Formatting Number Values in SQL Plus

You can also set Number format so see the numeric values with commas for easy reading.
For example if you select the rows from scott emp table you will see the output like this

In the above output the salary column is shown without any formatting which is the default in SQL Plus.
If you want to format numeric column values with commas, you can format it like this for example

SQL> col sal format $999,99,999.99

and now you will get the output like this

Department of Information Technology Page 21

Similarly you can also format all numeric values by giving the following command

SQL> set numformat "999,99,999.99"

Remember the above command will format all numeric values i.e. even empno, deptno etc will be
shown in the format, which you don't want in most case.

Format DATES in SQL Plus

Similarly you can also format date values in whatever date format you want by setting the session
variable NLS_DATE_FORMAT

For example if you set it to the following

SQL> alter session set nls_date_format='dd-Mon-yyyy hh:mi:sspm';

You will get the output like this

Department of Information Technology Page 22

Changing SQL Prompt in SQL Plus

You can change the default SQL> prompt in SQL Plus to something more meaningful like you can show
username and SID and date in the prompt by giving the following command:

SQL> set sqlprompt "_user 'ON' _connect_identifier':'_date> "

Then SQL Prompt will change to the following

Department of Information Technology Page 23

This is particularly useful if you work on multiple databases.

Automatic Setting

What about automatically setting the above formats whenever you login to SQL Plus?

If you want specific settings to be set whenever you login to SQL Plus, then you can write these set
commands in glogin.sql or login.sql file located in ORACLE_HOME/sqlplus/admin folder

For example, you can open or create a new glogin.sql or login.sql file using any text editor and write the
following commands:

 alter session set nls_date_format='dd-Mon-yyyy hh:mi:sspm';
set sqlprompt "_user 'ON' _connect_identifier':'_date> "

Now whenever you login to Oracle using SQL Plus, SQL Plus will show the dates in the above format
and SQL Prompt will also change to the above format.

Department of Information Technology Page 24

Oracle UNION, INTERSECT, MINUS OPERATORS

AND SORTING QUERY RESULT

The UNION [ALL], INTERSECT, MINUS Operators

You can combine multiple queries using the set operators UNION, UNION ALL, INTERSECT, and
MINUS. All set operators have equal precedence. If a SQL statement contains multiple set operators,
Oracle evaluates them from the left to right if no parentheses explicitly specify another order.

UNION Example

The following statement combines the results with the UNION operator, which eliminates duplicate
selected rows.

select empno,ename,sal from emp
UNION
select empno,ename,salary from oldemp

What if you need to select rows from two tables, but tables have different columns?
In this situation you have to use TO_CHAR function to fill up missing columns.

For Example

This statement shows that you must match datatype (using the TO_CHAR function) when columns do
not exist in one or the other table:

select empno, ename, sal, to_char(null) as “Transfer Date” from emp
 UNION
select empno,ename,to_char(null) as “Sal”,tdate from oldemp;

EMPNO ENAME SAL Transfer Date
----- ----- ------ -------------
101 Sami 5000
102 Smith 11-jul-2000
201 Tamim 10-AUG-2000
209 Ravi 2400

UNION ALL Example

The UNION operator returns only distinct rows that appear in either result, while the UNION ALL
operator returns all rows. The UNION ALL operator does not eliminate duplicate selected rows:

Department of Information Technology Page 25

select empno,ename from emp
union all
select empno,ename from oldemp;

INTERSECT Example

The following statement combines the results with the INTERSECT operator, which returns only those
rows returned by both queries:

SELECT empno FROM emp
INTERSECT
SELECT empno FROM oldemp;

MINUS Example

The following statement combines results with the MINUS operator, which returns only rows returned
by the first query but not by the second:

SELECT empno FROM emp
MINUS
SELECT empno FROM oldemp;

SORTING QUERY RESULTS

To sort query result you can use ORDER BY clause in SELECT statement.

Sorting Examples.

The following query sorts the employees according to ascending order of salaries.

select * from emp order by sal;

The following query sorts the employees according to descending order of salaries.

select * from emp order by sal desc;

The following query sorts the employees according to ascending order of names.

select * from emp order by ename;

The following query first sorts the employees according to ascending order of names.If names are equal
then sorts employees on descending order of salaries.

select * from emp order by ename, sal desc;

Department of Information Technology Page 26

You can also specify the positions instead of column names. Like in the following query,which shows
employees according to ascending order of their names.

select * from emp order by 2;

The following query first sorts the employees according to ascending order of salaries.

If salaries are equal then sorts employees on ascending order of names

select * from emp order by 3, 2;

SQL Functions in Oracle

SQL functions are built into Oracle and are available for use in various appropriate SQL statements.
You can also create your own function using PL/SQL.

Single-Row Functions

Single-row functions return a single result row for every row of a queried table or view. These functions
can appear in select lists, WHERE clauses, START WITH and CONNECT BY clauses, and HAVING
clauses.

Oracle SQL Functions can be divided into following categories

• Number Functions

• Character Functions

• Miscellaneous Single Row Functions

• Aggregate Functions

• Date and Time Functions

Here are the explanation and example of these functions

Number Functions (also known as Math Functions)

Number functions accept numeric input and return numeric values. Most of these functions return values
that are accurate to 38 decimal digits.

The number functions available in Oracle are:

ABS
ACOS

Department of Information Technology Page 27

 ASIN
 ATAN
 ATAN2
 BITAND
 CEIL
 COS
 COSH
 EXP
 FLOOR
 LN
 LOG
MOD
POWER
ROUND (number)
 SIGN
SIN
 SINH
SQRT
TAN
 TANH
 TRUNC (number)

ABS

ABS returns the absolute value of n.

The following example returns the absolute value of -87:

SELECT ABS(-87) "Absolute" FROM DUAL;

 Absolute

 87

ACOS

ACOS returns the arc cosine of n. Inputs are in the range of -1 to 1, and outputs are in the range of 0 to
pi and are expressed in radians.

The following example returns the arc cosine of .3:

SELECT ACOS(.3)"Arc_Cosine" FROM DUAL;

Arc_Cosine

Department of Information Technology Page 28

1.26610367

Similar to ACOS, you have ASIN (Arc Sine), ATAN (Arc Tangent) functions.

CIEL
Returns the lowest integer above the given number.

Example:

The following function returns the lowest integer above 3.456;

select ciel(3.456) “Ciel” from dual;

Ciel

 4

FLOOR

Returns the highest integer below the given number.

Example:

The following function return the highest integer below 3.456;

select floor(3.456) “Floor” from dual;

Floor

 3

COS

Returns the cosine of an angle (in radians).

Example:

The following example returns the COSINE angle of 60 radians.

select cos(60) “Cosine” from dual;

Department of Information Technology Page 29

SIN

Returns the Sine of an angle (in radians).

Example:

The following example returns the SINE angle of 60 radians.

select SIN(60) “Sine” from dual;

 TAN

Returns the Tangent of an angle (in radians).

Example:

The following example returns the tangent angle of 60 radians.

select Tan(60) “Tangent” from dual;

Similar to SIN, COS, TAN functions hyperbolic functions SINH, COSH, TANH are also available in
oracle.

MOD

Returns the remainder after dividing m with n.

Example

The following example returns the remainder after dividing 30 by 4.

Select mod(30,4) “MOD” from dual;

MOD

 2

POWER

Returns the power of m, raised to n.

Example

The following example returns the 2 raised to the power of 3.

Department of Information Technology Page 30

select power(2,3) “Power” from dual;

POWER

 8

EXP

Returns the e raised to the power of n.

Example

The following example returns the e raised to power of 2.

select exp(2) “e raised to 2” from dual;

E RAISED TO 2

LN

Returns natural logarithm of n.

Example

The following example returns the natural logarithm of 2.

select ln(2) from dual;

LN

 LOG

Returns the logarithm, base m, of n.

Example

The following example returns the log of 100.

select log(10,100) from dual;

LOG

Department of Information Technology Page 31

 2

ROUND

Returns a decimal number rounded of to a given decimal positions.

Example

The following example returns the no. 3.4573 rounded to 2 decimals.

select round(3.4573,2) “Round” from dual;

Round

 3.46

TRUNC

Returns a decimal number Truncated to a given decimal positions.

Example

The following example returns the no. 3.4573 truncated to 2 decimals.

select round(3.4573,2) “Round” from dual;

Round

 3.45

SQRT

Returns the square root of a given number.

Example

The following example returns the square root of 16.

select sqrt(16) from dual;

SQRT

 4

Department of Information Technology Page 32

Character Functions available in Oracle

Character Functions

Character functions operate on values of dataype CHAR or VARCHAR.

LOWER

Returns a given string in lower case.

select LOWER(‘SAMI’) from dual;

LOWER

sami

UPPER

Returns a given string in UPPER case.

select UPPER(‘Sami’) from dual;

UPPER

SAMI

INITCAP

Returns a given string with Initial letter in capital.

select INITCAP(‘mohammed sami’) from dual;

INITCAP

Mohammed Sami

 LENGTH

Returns the length of a given string.

select length(‘mohammed sami’) from dual;

Department of Information Technology Page 33

LENGTH

 13

SUBSTR

Returns a substring from a given string. Starting from position p to n characters.

For example the following query returns “sam” from the string “mohammed sami”.

select substr('mohammed sami',10,3) from dual;

Substr

sam

INSTR

Tests whether a given character occurs in the given string or not. If the character occurs in the string
then returns the first position of its occurrence otherwise returns 0.

Example

The following query tests whether the character “a” occurs in string “mohammed sami”

select instr('mohammed sami','a') from dual;

INSTR

4

REPLACE

Replaces a given set of characters in a string with another set of characters.

Example

The following query replaces “mohd” with “mohammed” .

select replace('ali mohd khan','mohd','mohammed') from dual;

REPLACE

ali mohammed khan

Department of Information Technology Page 34

TRANSLATE

This function is used to encrypt characters. For example you can use this function to replace characters
in a given string with your coded characters.

Example

The following query replaces characters A with B, B with C, C with D, D with E,...Z with A, and a with
b,b with c,c with d, d with ez with a.

select translate('interface','ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz',
 'BCDEFGHIJKLMNOPQRSTUVWXYZAbcdefghijklmnopqrstuvwxyza') “Encrypt” from dual;

Encrypt

joufsgbdf

SOUNDEX

This function is used to check pronounciation rather than exact characters. For example many people
write names as “smith” or “smyth” or “smythe” but they are pronounced as smith only.

Example

The following example compare those names which are spelled differently but are pronouced as
“smith”.

Select ename from emp where soundex(ename)=soundex('smith');

ENAME

Smith
Smyth
Smythe

RPAD

Right pads a given string with a given character to n number of characters.

Example

The following query rights pad ename with '*' until it becomes 10 characters.

Department of Information Technology Page 35

select rpad(ename,'*',10) from emp;

Ename

Smith*****
John******
Mohammed**
Sami******

LPAD

Left pads a given string with a given character upto n number of characters.

Example

The following query left pads ename with '*' until it becomes 10 characters.

select lpad(ename,'*',10) from emp;

Ename

*****Smith
******John
**Mohammed
******Sami

LTRIM

Trims blank spaces from a given string from left.

Example

The following query returns string “ Interface “ left trimmed.

select ltrim(' Interface ') from dual;

Ltrim

Interface

RTRIM

Trims blank spaces from a given string from Right.

Department of Information Technology Page 36

Example

The following query returns string “ Interface “ right trimmed.

select rtrim(' Interface ') from dual;

Rtrim

 Interface

TRIM

Trims a given character from left or right or both from a given string.

Example

The following query removes zero from left and right of a given string.

Select trim(0 from '00003443500') from dual;

Trim

34435

CONCAT

Combines a given string with another string.

Example

The following Query combines ename with literal string “ is a “ and jobid.

Select concat(concat(ename,' is a '),job) from emp;

Concat

Smith is a clerk
John is a Manager
Sami is a G.Manager

Department of Information Technology Page 37

Miscellaneous SQL Functions in Oracle

Miscellaneous Single Row Functions

COALESCE

 Coalesce function returns the first not null value in the expression list.

 Example.

The following query returns salary+commision, if commission is null then returns salary, if salary is also
null then returns 1000.

select empno,ename,salary,comm,coalesce(salary+comm,salary,1000) “Net Sal” from emp;

ENAME SALARY COMM NET SAL
----- ------ ---- -------
SMITH 1000 100 1100
SAMI 3000 3000
SCOTT 1000
RAVI 200 1000

DECODE

 DECODE(expr, searchvalue1, result1,searchvalue2,result2,..., defaultvalue)

Decode functions compares an expr with search value one by one. If the expr does not match any of the
search value then returns the default value. If the default value is omitted then returns null.

Example

The following query returns the department names according the deptno. If the deptno does not match
any of the search value then returns “Unknown Department”

select decode(deptno,10,'Sales',20,'Accounts,30,'Production,40,'R&D','Unknown Dept') As DeptName
from emp;

DEPTNAME

Sales
Accounts
Unknown Dept.
Accounts

Department of Information Technology Page 38

Production
Sales
R&D
Unknown Dept.

 GREATEST

 GREATEST(expr1, expr2, expr3,expr4...)

Returns the greatest expr from a expr list.

Example

select greatest(10,20,50,20,30) from dual;

GREATEST

50

 select greatest('SAMI','SCOTT','RAVI','SMITH','TANYA') from dual;

GREATEST

TANYA

LEAST

 LEAST(expr1, expr2, expr3,expr4...)

It is simillar to greatest. It returns the least expr from the expression list.

select least(10,20,50,20,30) from dual;

LEAST

10

select least('SAMI','SCOTT','RAVI','SMITH','TANYA') from dual;

LEAST

RAVI

Department of Information Technology Page 39

NVL

 NVL2(expr1,expr2)

This function is often used to check null values. It returns expr2 if the expr1 is null, otherwise returns
expr1.

Example

The following query returns commission if commission is null then returns 'Not Applicable'.

Select ename,nvl(comm,'Not Applicable') “Comm” from dual;

ENAME COMM
------ ----
Scott 300
Tiger 450
Sami Not Applicable
Ravi 300
Tanya Not Applicable

NVL2

 NVL2(expr1,expr2,expr3)

NVL2 returns expr2 if expr1 is not null, otherwise return expr3.

Example

The following query returns salary+comm if comm is not null, otherwise just returns salary.

select salary,comm,nvl2(comm,salary+comm,salary) “Income” from emp;

SALARY COMM INCOME
------ ---- ------
1000 100 1100
2000 2000
2300 200 2500
3400 3400

NULLIF

 NULLIF(expr1, expr2)

Department of Information Technology Page 40

Nullif compares expr1 with expr2. If they are equal then returns null, otherwise return expr1.

Example:

The following query shows old jobs of those employees who have changed their jobs in the company by
comparing the current job with old job in oldemp table.

Select ename,nullif(e.job,o.job) “Old Job” from emp e, oldemp o where e.empno=o.empno;

ENAME OLD JOB
----- -------
SMITH CLERK
SAMI
SCOTT MANAGER

UID

Returns the current session ID of user logged on.

Example

select uid from dual;

UID

20

USER

Returns the username of the current user logged on.

select user from dual;

USER

SCOTT

 SYS_CONTEXT

SYS_CONTEXT returns the value of parameter associated with the context namespace. You can use
this function in both SQL and PL/SQL statements.

EXAMPLE

Department of Information Technology Page 41

The following query returns the username of the current user.

Select sys_context('USERENV','SESSION_USER') “Username” from dual;

USERNAME

SCOTT

Similar to SESSION_USER parameter for namespace USERENV the other important parameters are

ISDBA :To check whether the current user is having DBA privileges or not.

HOST :Returns the name of host machine from which the client is connected.

INSTANCE :The instance identification number of the current instance

IP_ADDRESS: IP address of the machine from which the client is connected.

DB_NAME :Name of the database as specified in the DB_NAME initialization parameter

VSIZE

 VSIZE(expr)

Returns the internal representation of expr in bytes.

Example

The following query return the representation of ename in bytes.

select ename,vsize(ename) as Bytes from emp;

ENAME BYTES
------ ------
SCOTT 5
SAMI 4
RAVI 4
KIRAN 5

Department of Information Technology Page 42

Oracle Aggregate SQL Functions

Aggregate Functions

Aggregate functions return a single value based on groups of rows, rather than single value for each row.
You can use Aggregate functions in select lists and in ORDER BY and HAVING clauses. They are
commonly used with the GROUP BY clause in a SELECT statement, where Oracle divides the rows of
a queried table or view into groups.

The important Aggregate functions are:

Avg Sum Max Min Count Stddev Variance

AVG

 AVG(ALL /DISTINCT expr)

Returns the average value of expr.

Example

The following query returns the average salary of all employees.

select avg(sal) “Average Salary” from emp;

Average Salary

2400.40

SUM

 SUM(ALL/DISTINCT expr)

Returns the sum value of expr.

Example

The following query returns the sum salary of all employees.

select sum(sal) “Total Salary” from emp;

Total Salary

26500

Department of Information Technology Page 43

MAX

 MAX(ALL/DISTINCT expr)

Returns maximum value of expr.

Example

The following query returns the max salary from the employees.

select max(sal) “Max Salary” from emp;

Maximum Salary

4500

MIN

 MIN(ALL/DISTINCT expr)

Returns minimum value of expr.

Example

The following query returns the minimum salary from the employees.

select min(sal) “Min Salary” from emp;

Minimum Salary

1200

COUNT

 COUNT(*) OR COUNT(ALL/DISTINCT expr)

Returns the number of rows in the query. If you specify expr then count ignore nulls. If you specify the
asterisk (*), this function returns all rows, including duplicates and nulls. COUNT never returns null.

Example

The following query returns the number of employees.

Select count(*) from emp;

Department of Information Technology Page 44

COUNT

14

The following query counts the number of employees whose salary is not null.

Select count(sal) from emp;

COUNT

12

STDDEV

 STDDEV(ALL/DISTINCT expr)

STDDEV returns sample standard deviation of expr, a set of numbers.

Example

The following query returns the standard deviation of salaries.

select stddev(sal) from emp;

Stddev

 1430

VARIANCE

 VARIANCE(ALL/DISTINCT expr)

Variance returns the variance of expr.

Example

The following query returns the variance of salaries.

select variance(sal) from emp;

Variance

1430

Department of Information Technology Page 45

Formating DATES in Oracle

Date Functions and Operators.

To see the system date and time use the following functions:

CURRENT_DATE : returns the current date in the session time zone, in a value in the Gregorian
 calendar of data type DATE
SYSDATE :Returns the current date and time.
SYSTIMESTAMP :The SYSTIMESTAMP function returns the system date, including fractional
 seconds and time zone of the database. The return type is TIMESTAMP WITH
 TIME ZONE.

SYSDATE Example

To see the current system date and time give the following query.

select sysdate from dual;

SYSDATE

8-AUG-03

The format in which the date is displayed depends on NLS_DATE_FORMAT parameter.

For example set the NLS_DATE_FORMAT to the following format

alter session set NLS_DATE_FORMAT=’DD-MON-YYYY HH:MIpm’;

Then give the give the following statement

select sysdate from dual;

SYSDATE

8-AUG-2003 03:05pm

The default setting of NLS_DATE_FORMAT is DD-MON-YY

CURRENT_DATE Example

To see the current system date and time with time zone use CURRENT_DATE function

Department of Information Technology Page 46

ALTER SESSION SET TIME_ZONE = '-4:0';
ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';
SELECT SESSIONTIMEZONE, CURRENT_DATE FROM DUAL;

SESSIONTIMEZONE CURRENT_DATE
--------------- --------------------
-04:00 22-APR-2003 14:15:03

ALTER SESSION SET TIME_ZONE = '-7:0';
SELECT SESSIONTIMEZONE, CURRENT_DATE FROM DUAL;

SESSIONTIMEZONE CURRENT_DATE
--------------- --------------------
-07:00 22-APR-2003 09:15:33

 SYSTIMESTAMP Example

To see the current system date and time with fractional seconds with time zone give the following
statement

select systimestamp from dual;

SYSTIMESTAMP

22-APR-03 08.38.55.538741 AM -07:00

DATE FORMAT MODELS

To translate the date into a different format string you can use TO_CHAR function with date format. For
example to see the current day you can give the following query

Select to_char(sysdate,’DAY’)”Today” FROM DUAL;

TODAY

THURSDAY

To translate a character value, which is in format other than the default date format, into a date value
you can use TO_DATE function with date format to date

Like this “DAY” format model there are many other date format models available in Oracle. The
following table list date format models.

Department of Information Technology Page 47

FORMAT MEANING

D Day of the week

DD Day of the month

DDD Day of the year

DAY Full day for ex. ‘Monday’, ’Tuesday’, ’Wednesday’

DY Day in three letters for ex. ‘MON’, ‘TUE’,’FRI’

W Week of the month

WW Week of the year

MM Month in two digits (1-Jan, 2-Feb,…12-Dec)

MON Month in three characters like “Jan”, ”Feb”, ”Apr”

MONTH Full Month like “January”, ”February”, ”April”

RM Month in Roman Characters (I-XII, I-Jan, II-Feb,…XII-Dec)

Q Quarter of the Month

YY Last two digits of the year.

YYYY Full year

YEAR Year in words like “Nineteen Ninety Nine”

HH Hours in 12 hour format

HH12 Hours in 12 hour format

HH24 Hours in 24 hour format

MI Minutes

SS Seconds

FF Fractional Seconds

SSSSS Milliseconds

J Julian Day i.e Days since 1st-Jan-4712BC to till-date

RR If the year is less than 50 Assumes the year as 21ST Century. If the year
is greater than 50 then assumes the year in 20th Century.

 Suffixes

TH Returns th, st, rd or nd according to the leading number like 1st , 2nd 3rd 4th

SP Spells out the leading number

AM or PM Returns AM or PM according to the time

SPTH Returns Spelled Ordinal number. For. Example First, Fourth

For example to see the today’s date in the following format

Friday, 7th March, 2014

Give the following statement

select to_char(sysdate,’Day, ddth Month, yyyy’)”Today” from dual;

Department of Information Technology Page 48

TODAY

Friday, 7th March, 2014

For example you want to see hire dates of all employee in the following format

Friday, 8th August, 2003

Then give the following query.

select to_char(hire_date,’Day, ddth Month, yyyy’) from emp;

TO_DATE Example

To_Date function is used to convert strings into date values. For example you want to see what was the
day on 15-aug-1947. The use the to_date function to first convert the string into date value and then pass
on this value to to_char function to extract day.

select to_char(to_date(’15-aug-1947’,’dd-mon-yyyy’),’Day’)
 from dual;

TO_CHAR(

Friday

To see how many days have passed since 15-aug-1947 then give the following query

select sysdate-to_date(’15-aug-1947’,’dd-mon-yyyy’) from dual;

Now we want to see which date will occur after 45 days from now

select sysdate+45 from dual;

SYSDATE

06-JUN-2003

ADD_MONTHS

To see which date will occur after 6 months from now, we can use ADD_MONTHS function

Select ADD_MONTHS(SYSDATE,6) from dual;

Department of Information Technology Page 49

ADD_MONTHS

22-OCT-2003

 MONTHS_BETWEEN

To see how many months have passed since a particular date, use the MONTHS_BETWEEN function.

For Example, to see how many months have passed since 15-aug-1947, give the following query.

select months_between(sysdate,to_date(’15-aug-1947’))
 from dual;

Months

616.553

To eliminate the decimal value use truncate function

select trunc(months_between(sysdate,to_date(’15-aug-1947’)))
 from dual;

Months

616

 LAST_DAY

To see the last date of the month of a given date, Use LAST_DAY function.

select LAST_DAY(sysdate) from dual;

LAST_DAY

31-AUG-2003

 NEXT_DAY

To see when a particular day is coming next , use the NEXT_DAY function.

For Example to view when next Saturday is coming, give the following query

select next_day(sysdate) from dual;

NEXT_DAY

Department of Information Technology Page 50

09-AUG-2003

 EXTRACT

An EXTRACT datetime function extracts and returns the value of a specified datetime field from a
datetime or interval value expression. When you extract a TIMEZONE_REGION or
TIMEZONE_ABBR (abbreviation), the value returned is a string containing the appropriate time zone
name or abbreviation

The syntax of EXTRACT function is

EXTRACT (YEAR / MONTH / WEEK / DAY / HOUR / MINUTE / TIMEZONE FROM DATE)

Example
The following demonstrate the usage of EXTRACT function to extract year from current date.

select extract(year from sysdate) from dual;

EXTRACT

2003

Join Queries in Oracle

Joins

A join is a query that combines rows from two or more tables, views, or materialized views. Oracle
performs a join whenever multiple tables appear in the query's FROM clause. The query's select list can
select any columns from any of these tables. If any two of these tables have a column name in common,
you must qualify all references to these columns throughout the query with table names to avoid
ambiguity.

Join Conditions

Most join queries contain WHERE clause conditions that compare two columns, each from a different
table. Such a condition is called a join condition. To execute a join, Oracle combines pairs of rows, each
containing one row from each table, for which the join condition evaluates to TRUE. The columns in the
join conditions need not also appear in the select list.

Department of Information Technology Page 51

Equijoins

An equijoin is a join with a join condition containing an equality operator (=). An equijoin combines
rows that have equivalent values for the specified columns.

For example the following query returns empno,name,sal,deptno and department name and city from
department table.

select emp.empno,emp.ename,emp.sal,emp.deptno,dept.dname,dept.city from emp,dept where
emp.deptno=dept.deptno;

The above query can also be written like, using aliases, given below.

select e.empno, e.ename, e.sal, e.deptno, d.dname, d.city from emp e, dept d where
emp.deptno=dept.deptno;

The above query can also be written like given below without using table qualifiers.

select empno,ename,sal,dname,city from emp,dept where emp.deptno=dept.deptno;

And if you want to see all the columns of both tables then the query can be written like this.

select * from emp,dept where emp.deptno=dept.deptno;

Non Equi Joins.

Non equi joins is used to return result from two or more tables where exact join is not possible.

For example we have emp table and salgrade table. The salgrade table contains grade and their low
salary and high salary. Suppose you want to find the grade of employees based on their salaries then you
can use NON EQUI join.

select e.empno, e.ename, e.sal, s.grade from emp e, salgrade s where e.sal between s.lowsal and s.hisal

Self Joins

A self join is a join of a table to itself. This table appears twice in the FROM clause and is followed by
table aliases that qualify column names in the join condition. To perform a self join, Oracle combines
and returns rows of the table that satisfy the join condition.

For example the following query returns employee names and their manager names for whom they are
working.

Select e.empno, e.ename, m.ename “Manager” from emp e,
 emp m where e.mgrid=m.empno

Department of Information Technology Page 52

Inner Join

An inner join (sometimes called a "simple join") is a join of two or more tables that returns only those
rows that satisfy the join condition.

Outer Joins

An outer join extends the result of a simple join. An outer join returns all rows that satisfy the join
condition and also returns some or all of those rows from one table for which no rows from the other
satisfy the join condition.

• To write a query that performs an outer join of tables A and B and returns all rows from A (a left
outer join), use the ANSI LEFT [OUTER] JOIN syntax, or apply the outer join operator (+) to all
columns of B in the join condition. For all rows in A that have no matching rows in B, Oracle
returns null for any select list expressions containing columns of B.

• To write a query that performs an outer join of tables A and B and returns all rows from B (a
right outer join), use the ANSI RIGHT [OUTER] syntax, or apply the outer join operator (+) to
all columns of A in the join condition. For all rows in B that have no matching rows in A, Oracle
returns null for any select list expressions containing columns of A.

• To write a query that performs an outer join and and returns all rows from A and B, extended
with nulls if they do not satisfy the join condition (a full outer join), use the ANSI FULL
[OUTER] JOIN syntax.

For example the following query returns all the employees and department names and even those
department names where no employee is working.

select e.empno,e.ename,e.sal,e.deptno,d.dname,d.city from emp e, dept d
 where e.deptno(+)=d.deptno;

That is specify the (+) sign to the column which is lacking values.

Cartesian Products

If two tables in a join query have no join condition, Oracle returns their Cartesian product. Oracle
combines each row of one table with each row of the other. A Cartesian product always generates many
rows and is rarely useful. For example, the Cartesian product of two tables, each with 100 rows, has
10,000 rows. Always include a join condition unless you specifically need a Cartesian product.

Department of Information Technology Page 53

Sub Queries and GROUP BY Queries in Oracle

SUBQUERIES

A query nested within a query is known as subquery.

For example, you want to see all the employees whose salary is above average salary. For this you have
to first compute the average salary using AVG function and then compare employees salaries with this
computed salary. This is possible using subquery. Here the sub query will first compute the average
salary and then main query will execute.

Select * from emp where sal > (select avg(sal) from emp);

Similarly we want to see the name and empno of that employee whose salary is maximum.

Select * from emp where sal = (select max(sal) from emp);

To see second maximum salary

Select max(sal) from emp where
 sal < (select max(sal) from emp);

Similarly to see the Third highest salary:

Select max(sal) from emp where
 sal < (select max(sal) from emp where
 sal < (select max(sal) from emp));

We want to see how many employees are there whose salary is above average.

Select count(*) from emp where
 sal > (select max(sal) from emp);

We want to see those employees who are working in Hyderabad. Remember emp and dept are joined on
deptno and city column is in the dept table. Assuming that wherever the department is located the
employee is working in that city.

Select * from emp where deptno
 in (select deptno from dept where city=’HYD’);

You can also use subquery in FROM clause of SELECT statement.

For example the following query returns the top 5 salaries from employees table.

Department of Information Technology Page 54

Select sal from (select sal from emp order sal desc)
 where rownum <= 5;

To see the sum salary deptwise you can give the following query.

Select sum(sal) from emp group by deptno;

Now to see the average total salary deptwise you can give a sub query in FROM clause.

select avg(depttotal) from (select sum(sal) as depttotal from emp group by deptno);

WITH

The above average total salary department wise can also be achieved from Oracle Version 9i using
WITH clause given below

WITH
 DEPTOT AS (select sum(sal) as dsal from emp
 group by deptno)
 select avg(dsal) from deptot;

GROUP BY QUERIES

You can group query results on some column values. When you give a SELECT statement without
group by clause then all the resultant rows are treated as a single group.

For Example, we want to see the sum salary of all employees dept wise. Then the following query will
achieved the result.

Select deptno,sum(sal) from emp group by deptno;

Similarly we want to see the average salary dept wise

Select deptno,avg(sal) from emp group by deptno;

Similarly we want to see the maximum salary in each department.

Select deptno,max(sal) from emp group by deptno;

Similarly the minimum salary.

Select deptno,min(sal) from emp group by deptno;

Now we want to see the number of employees working in each department.

Department of Information Technology Page 55

Select deptno,count(*) from emp group by deptno;

Now we want to see total salary department wise where the dept wise total salary is above 5000.

For this you have to use HAVING clause. Remember HAVING clause is used to filter groups and
WHERE clause is used to filter rows. You cannot use WHERE clause to filter groups.

select deptno,sum(sal) from emp group by deptno
 having sum(sal) >= 5000;

We want to see those departments and the number of employees working in them where the number of
employees is more than 2.

Select deptno, count(*) from emp group by deptno
 having count(*) >=2;

Instead of displaying deptno you can also display deptnames by using join conditions.

For example we want to see deptname and average salary of them.

Select dname,avg(sal) from emp,dept
 where emp.deptno=dept.deptno group by dname;

Similarly to see sum of sal.

Select dname,sum(sal) from emp,dept
 where emp.deptno=dept.deptno group by dname;

We want to see the cities name and the no of employees working in each city. Remember emp and dept
are joined on deptno and city column is in the dept table. Assuming that : wherever the department is
located the employee is working in that city.

Select dept.city,count(empno) from emp,dept
 where emp.deptno=dept.deptno
 Group by dept.city;

CUBE, ROLLUP and CASE Expression in Oracle

ROLLUP

The ROLLUP operation in the simple_grouping_clause groups the selected rows based on the values of
the first n, n-1, n-2, ... 0 expressions in the GROUP BY specification, and returns a single row of

Department of Information Technology Page 56

summary for each group. You can use the ROLLUP operation to produce subtotal values by using it
with the SUM function. When used with SUM, ROLLUP generates subtotals from the most detailed
level to the grand total. Aggregate functions such as COUNT can be used to produce other kinds of
superaggregates.

For example, given three expressions (n=3) in the ROLLUP clause of the simple_grouping_clause, the
operation results in n+1 = 3+1 = 4 groupings.

Rows grouped on the values of the first 'n' expressions are called regular rows, and the others are called
superaggregate rows.

The following query uses rollup operation to show sales amount product wise and year wise. To see the
structure of the sales table refer to appendices.

Select prod,year,sum(amt) from sales
 group by rollup(prod,year);

CUBE

The CUBE operation in the simple_grouping_clause groups the selected rows based on the values of all
possible combinations of expressions in the specification, and returns a single row of summary
information for each group. You can use the CUBE operation to produce cross-tabulation values.

For example, given three expressions (n=3) in the CUBE clause of the simple_grouping_clause, the
operation results in 2n = 23 = 8 groupings. Rows grouped on the values of 'n' expressions are called
regular rows, and the rest are called super aggregate rows.

The following query uses CUBE operation to show sales amount product wise and year wise. To see the
structure of the sales table refer to appendices.

Select prod,year,sum(amt) from sales
 group by CUBE(prod,year);

CASE EXPRESSION

CASE expressions let you use IF ... THEN ... ELSE logic in SQL statements without having to invoke
procedures.

For example the following query uses CASE expression to display Department Names based on deptno.

select empno,ename,sal,CASE deptno when 10 then
 ‘Accounts’ when 20 then ‘Sales’
 when 30 then ‘R&D’
 else “Unknown’ end
 from emp;

Department of Information Technology Page 57

The following statement finds the average salary of the employees in the employees table using $2000
as the lowest salary possible:

SELECT AVG(CASE WHEN e.sal > 2000 THEN e.sal
 ELSE 2000 END) "Average Salary" from emp e;

Oracle INSERT, UPDATE, DELETE, MERGE, Multi INSERT

Statements

Data Manipulation Language (DML) Statements

Data manipulation language (DML) statements query and manipulate data in existing schema objects.
These statements do not implicitly commit the current transaction.

The following are the DML statements available in Oracle.

• INSERT : Use to Add Rows to existing table.
• UPDATE : Use to Edit Existing Rows in tables.
• DELETE : Use to Delete Rows from tables.
• MERGE : Use to Update or Insert Rows depending on condition.

Insert

Use the Insert Statement to Add records to existing Tables.

Examples:

To add a new row to an emp table.

Insert into emp values (101,’Sami’,’G.Manager’,
 ’8-aug-1998’,2000);

If you want to add a new row by supplying values for some columns not all the columns then you have
to mention the name of the columns in insert statements. For example the following statement inserts
row in emp table by supplying values for empno, ename, and sal columns only. The Job and Hiredate
columns will be null.

Insert into emp (empno,ename,sal) values (102,’Ashi’,5000);

Suppose you want to add rows from one table to another i.e. suppose we have Old_Emp table and emp
table with the following structure:

Department of Information Technology Page 58

Now we want to add rows from old_emp table to emp table. Then you can give the following insert
statement:

Insert into emp (empno, ename, sal)
 select empno, ename, sal from old_emp;

Multi Table Insert

Suppose we have sales table with the following structure.

Sales

Now we want to add the rows from SALES table Weekly_Sales Table in the following Structure:

To achieve the above we can give a multi table INSERT statement given below-

Department of Information Technology Page 59

Insert all
 Into week_sales(prodid,prodname,weekday,amount)
 Values (prodid,prodname,’Mon’,mon_amt)
 Into week_sales(prodid,prodname,weekday,amount)
 Values (prodid,prodname,’Tue’,tue_amt)
 Into week_sales(prodid,prodname,weekday,amount)
 Values (prodid,prodname,’Wed’,wed_amt)
 Into week_sales(prodid,prodname,weekday,amount)
 Values (prodid,prodname,’Thu’,thu_amt)
 Into week_sales(prodid,prodname,weekday,amount)
 Values (prodid,prodname,’Fri’,fri_amt)
 Into week_sales(prodid,prodname,weekday,amount)
 Values (prodid,prodname,’Sat’,sat_amt)
 Select prodid,prodname,mon_amt,tue_amt,wed_amt,thu_amt
 Fri_amt,sat_amt from sales;

 Update

Update statement is used to update rows in existing tables which is in your own schema or if you have
update privilege on them.

For example to raise the salary by Rs.500 of employee number 104, you can give the following
statement:

update emp set sal=sal+500 where empno = 104;

In the above statement if we did not give the where condition then all employees salary will be raised by
Rs. 500. That’s why always specify proper WHERE condition if don’t want to update all employees.

For example : we want to change the name of employee no 102 from ‘Sami’ to ‘Mohd Sami’ and to
raise the salary by 10%. Then the statement will be.

update emp set name=’Mohd Sami’,
 sal=sal+(sal*10/100) where empno=102;

Now we want to raise the salary of all employees by 5%.

update emp set sal=sal+(sal*5/100);

Now to change the names of all employees to uppercase:

update emp set name=upper(name);

Suppose we have a student table with the following structure:

Department of Information Technology Page 60

Now to compute total which is sum of Maths, Phy and Chem and Average.

update student set total=maths+phy+chem,
 average=(maths+phy+chem)/3;

Using Sub Query in the Update Set Clause.

Suppose we added the city column in the employee table and now we want to set this column with
corresponding city column in department table which is join to employee table on deptno.

update emp set city=(select city from dept
 where deptno= emp.deptno);

Delete

Use the DELETE statement to delete the rows from existing tables which are in your schema or if you
have DELETE privilege on them.

For example to delete the employee whose empno is 102:

delete from emp where empno=102;

If you don’t mention the WHERE condition then all rows will be deleted.

Suppose we want to delete all employees whose salary is above 2000. Then give the following DELETE
statement.

delete from emp where salary > 2000;

The following statement has the same effect as the preceding example, but uses a sub query:

DELETE FROM (SELECT * FROM emp)
 WHERE sal > 2000;

To delete all rows from emp table.

delete from emp;

Department of Information Technology Page 61

Merge

Use the MERGE statement to select rows from one table for update or insertion into another table. The
decision whether to update or insert into the target table is based on a condition in the ON clause. It is a
new feature of Oracle Ver. 9i. It is also known as UPSERT i.e. combination of UPDATE and INSERT.

For example suppose we are having sales and sales_history table with the following structure.

 Now we want to update sales_history table from sales table i.e. those rows which are already present in
sales_history, their amount should be updated and those rows which are not present in sales_history
table should be inserted.

merge into sales_history sh
 using sales s
 on (s.prod=sh.prod and s.month=sh.month)
 when matched then update set sh.amount=s.amount
 when not matched then insert values (prod,month,amount);

After the statement is executed sales_history table will look like this.

Department of Information Technology Page 62

Oracle DDL Commands

Data Definition Language (DDL) Statements

Data definition language (DDL) statements enable you to perform these tasks:

• Create, alter, and drop schema objects
• Grant and revoke privileges and roles
• Analyze information on a table, index, or cluster
• Establish auditing options
• Add comments to the data dictionary

The CREATE, ALTER, and DROP commands require exclusive access to the specified object. For
example, an ALTER TABLE statement fails if another user has an open transaction on the specified
table.

The GRANT, REVOKE, ANALYZE, AUDIT, and COMMENT commands do not require exclusive
access to the specified object. For example, you can analyze a table while other users are updating the
table.

Oracle implicitly commits the current transaction before and after every DDL statement.
Many DDL statements may cause Oracle to recompile or reauthorize schema objects.

DDL Statements are:

CREATE : Use to create objects like CREATE TABLE, CREATE FUNCTION,
 CREATE SYNONYM, CREATE VIEW. Etc.

ALTER : Use to Alter Objects like ALTER TABLE, ALTER USER, ALTER
 TABLESPACE, ALTER DATABASE. Etc.

DROP : Use to Drop Objects like DROP TABLE, DROP USER, DROP
 TABLESPACE, DROP FUNCTION. Etc.

REPLACE : Use to Rename table names.

TRUNCATE : Use to truncate (delete all rows) a table.

Department of Information Technology Page 63

Create

Creating tables, views, synonyms, sequences, functions, procedures, packages etc.

For example: to create a table, you can give the following statement

create table emp (empno number(5) primary key,
 name varchar2(20),
 sal number(10,2),
 job varchar2(20),
 mgr number(5),
 Hiredate date,
 comm number(10,2));

Now Suppose you have emp table now you want to create a TAX table with the following structure and
also insert rows of those employees whose salary is above 5000.

Tax

Empno
Tax

Number(5)
Number(10,2)

To do this we can first create TAX table by defining column names and data types and then use INSERT
into EMP SELECT …. Statement to insert rows from emp table given below:

create table tax (empno number(5), tax number(10,2));

insert into tax select empno,(sal-5000)*0.40
 from emp where sal > 5000;

Instead of executing the above two statements the same result can be achieved by giving a single
CREATE TABLE AS statement.

create table tax as select empno,(sal-5000)*0.4
 as tax from emp where sal>5000

You can also use CREATE TABLE AS statement to create copies of tables. Like to create a copy EMP
table as EMP2 you can give the following statement.

create table emp2 as select * from emp;

To copy tables without rows i.e. to just copy the structure give the following statement

create table emp2 as select * from emp where 1=2;

Department of Information Technology Page 64

Temporary Tables (From Oracle Ver. 8i)

It is also possible to create a temporary table. The definition of a temporary table is visible to all
sessions, but the data in a temporary table is visible only to the session that inserts the data into the table.
You use the CREATE GLOBAL TEMPORARY TABLE statement to create a temporary table. The ON
COMMIT keywords indicate if the data in the table is transaction-specific (the default) or session-
specific:

• ON COMMIT DELETE ROWS specifies that the temporary table is transaction specific and
Oracle truncates the table (delete all rows) after each commit.

• ON COMMIT PRESERVE ROWS specifies that the temporary table is session specific and
Oracle truncates the table when you terminate the session.

This example creates a temporary table that is transaction specific:

CREATE GLOBAL TEMPORARY TABLE taxable_emp
 (empno number(5),
 ename varchar2(20),
 sal number(10,2),
 tax number(10,2))
 ON COMMIT DELETE ROWS;

Indexes can also be created on temporary tables. They are also temporary and the data in the index has
the same session or transaction scope as the data in the underlying table.

Alter

Use the ALTER TABLE statement to alter the structure of a table.

Examples:

To add new columns addr, city, pin, ph, fax to employee table you can give the following statement

alter table emp add (addr varchar2(20), city varchar2(20),
 pin varchar2(10),ph varchar2(20));

For example we you want to increase the length of the column ename from varchar2(20) to varchar2(30)
then give the following command.

alter table emp modify (ename varchar2(30))

To decrease the width of a column the column can be decreased up to largest value it holds.

alter table emp modify (ename varchar2(15));

Department of Information Technology Page 65

The above is possible only if you are using Oracle ver 8i and above. In Oracle 8.0 and 7.3 you cannot
decrease the column width directly unless the column is empty.

To change the datatype the column must be empty in All Oracle Versions.

Drop columns

From Oracle Ver. 8i you can drop columns directly it was not possible in previous versions.

For example to drop PIN, CITY columns from emp table.

alter table emp drop column (pin, city);

Remember you cannot drop the column if the table is having only one column.

If the column you want to drop is having primary key constraint on it then you have to give cascade
constraint clause.

alter table emp2 drop column (empno) cascade constraints;

To drop columns in previous versions of Oracle8.0 and 7.3 and to change the column name in all Oracle
versions do the following:

For example we want to drop pin and city columns and to change SAL column name to SALARY.

Step 1: Create a temporary table with desired columns using subquery.

create table temp as select empno, ename,
 sal AS salary, addr, ph from emp;

Step 2: Drop the original table.

drop table emp;

Step 3: Rename the temporary table to the original table.

rename temp to emp;

Rename

Use the RENAME statement to rename a table, view, sequence, or private synonym for a table, view, or
sequence.

• Oracle automatically transfers integrity constraints, indexes, and grants on the old object to the
new object.

Department of Information Technology Page 66

• Oracle invalidates all objects that depend on the renamed object, such as views, synonyms, and
stored procedures and functions that refer to a renamed table.

Example:

To rename table emp2 to employee2 give the following command.

rename emp2 to employee2

Drop

Use the drop statement to drop tables, functions, procedures, packages, views, synonym, sequences,
table spaces etc.

Example: The following command drops table emp2

drop table emp2;

If emp2 table is having primary key constraint, to which other tables refer to, then you have to first drop
referential integrity constraint and then drop the table. Or if you want to drop table by dropping the
referential constraints then give the following command

drop table emp2 cascade constraints;

Truncate

Use the Truncate statement to delete all the rows from table permanently. It is same as “DELETE
FROM <table_name>” except

• Truncate does not generate any rollback data hence, it cannot be roll backed.
• If any delete triggers are defined on the table. Then the triggers are not fired
• It deallocates free extents from the table. So that the free space can be use by other tables.

Example

truncate table emp;

If you do not want free space and keep it with the table. Then specify the REUSE storage clause like this

truncate table emp reuse storage;

Department of Information Technology Page 67

Transaction Control Language (TCL)

Transaction control statements manage changes made by DML statements.

What is a Transaction?

A transaction is a set of SQL statements which Oracle treats as a Single Unit. i.e. all the statements
should execute successfully or none of the statements should execute.

To control transactions Oracle does not made permanent any DML statements unless you commit it. If
you don’t commit the transaction and power goes off or system crashes then the transaction is roll
backed.

TCL Statements available in Oracle are

COMMIT : Make changes done in transaction permanent.
ROLLBACK: Rollbacks the state of database to the last commit point.
SAVEPOINT: Use to specify a point in transaction to which later you can rollback.

COMMIT

To make the changes done in a transaction permanent issues the COMMIT statement.

The syntax of COMMIT Statement is

COMMIT [WORK] [COMMENT ‘your comment’];

WORK is optional.

COMMENT is also optional, specify this if you want to identify this transaction in data dictionary
DBA_2PC_PENDING.

Example

insert into emp (empno,ename,sal) values (101,’Abid’,2300);

commit;

 ROLLBACK

To rollback the changes done in a transaction give rollback statement. Rollback restore the state of the
database to the last commit point.

Example:

Department of Information Technology Page 68

delete from emp;

rollback; /* undo the changes */

 SAVEPOINT

Specify a point in a transaction to which later you can roll back.

Example

insert into emp (empno,ename,sal) values (109,’Sami’,3000);
savepoint a;
insert into dept values (10,’Sales’,’Hyd’);
savepoint b;
insert into salgrade values (‘III’,9000,12000);

Now if you give

rollback to a;

Then row from salgrade table and dept will be roll backed. At this point you can commit the row
inserted into emp table or rollback the transaction.

If you give

rollback to b;

Then row inserted into salgrade table will be roll backed. At this point you can commit the row inserted
into dept table and emp table or rollback to savepoint a or completely roll backed the transaction.

If you give

rollback;

Then the whole transactions is roll backed.

If you give

commit;

Then the whole transaction is committed and all savepoints are removed.

Department of Information Technology Page 69

How to Grant and Revoke privileges in Oracle

Data Control Language (DCL) Statements

Data Control Language Statements are used to grant privileges on tables, views, sequences, synonyms,
procedures to other users or roles.

The DCL statements are

GRANT : Use to grant privileges to other users or roles.
REVOKE : Use to take back privileges granted to other users and roles.

Privileges are of two types:

• System Privileges
• Object privileges

System Privileges are normally granted by a DBA to users. Examples of system privileges are CREATE
SESSION, CREATE TABLE, and CREATE USER etc.

Object privileges means privileges on objects such as tables, views, synonyms, procedure. These are
granted by owner of the object.

Object Privileges are:

ALTER Change the table definition with the ALTER TABLE statement.

DELETE Remove rows from the table with the DELETE statement.

Note: You must grant the SELECT privilege on the table along with the DELETE
privilege.

INDEX Create an index on the table with the CREATE INDEX statement.

INSERT Add new rows to the table with the INSERT statement.

REFERENCES

Create a constraint that refers to the table. You cannot grant this privilege to a role.

SELECT Query the table with the SELECT statement.

UPDATE Change data in the table with the UPDATE statement.

 Note: You must grant the SELECT privilege on the table along with the UPDATE
privilege.

Grant

Grant is use to grant privileges on tables, view, procedure to other users or roles.

Department of Information Technology Page 70

Example: Suppose you own emp table. Now you want to grant select, update, insert privilege on this
table to other user “SAMI”.

grant select, update, insert on emp to sami;

Suppose you want to grant all privileges on emp table to sami. Then

grant all on emp to sami;

Suppose you want to grant select privilege on emp to all other users of the database. Then

grant select on emp to public;

Suppose you want to grant update and insert privilege on only certain columns not on all the columns
then include the column names in grant statement. For example you want to grant update privilege on
ename column only and insert privilege on empno and ename columns only. Then give the following
statement

grant update (ename),insert (empno, ename) on emp to sami;

To grant select statement on emp table to sami and to make sami be able further pass on this privilege
you have to give WITH GRANT OPTION clause in GRANT statement like this.

grant select on emp to sami with grant option;

REVOKE

Use to revoke privileges already granted to other users.

For example to revoke select, update, insert privilege you have granted to Sami then give the following
statement.

revoke select, update, insert on emp from sami;

To revoke select statement on emp granted to public give the following command:

revoke select on emp from public;

To revoke update privilege on ename column and insert privilege on empno and ename columns give the
following revoke statement.

revoke update, insert on emp from sami;

Department of Information Technology Page 71

Note: You cannot take back column level privileges. Suppose you just want to take back insert privilege
on ename column then you have to first take back the whole insert privilege and then grant privilege on
empno column.

ROLES

A role is a group of Privileges. A role is very handy in managing privileges, particularly in such
situation when number of users should have the same set of privileges.

For example you have four users: Sami, Scott, Ashi, Tanya in the database. To these users you want to
grant select, update privilege on emp table, select, delete privilege on dept table. To do this first create a
role by giving the following statement

create role clerks

Then grant privileges to this role.

grant select,update on emp to clerks;
grant select,delete on dept to clerks;

Now grant this clerks role to users like this

grant clerks to sami, scott, ashi, tanya ;

Now Sami, Scott, Ashi and Tanya have all the privileges granted on clerks role.

Suppose after one month you want grant delete on privilege on emp table all these users then just grant
this privilege to clerks role and automatically all the users will have the privilege.

grant delete on emp to clerks;

If you want to take back update privilege on emp table from these users just take it back from clerks
role.

revoke update on emp from clerks;

To Drop a role

Drop role clerks;

Department of Information Technology Page 72

LISTING INFORMATION ABOUT PRIVILEGES

To see which table privileges are granted by you to other users.

SELECT * FROM USER_TAB_PRIVS_MADE

To see which table privileges are granted to you by other users

SELECT * FROM USER_TAB_PRIVS_RECD;

To see which column level privileges are granted by you to other users.

SELECT * FROM USER_COL_PRIVS_MADE

To see which column level privileges are granted to you by other users

SELECT * FROM USER_COL_PRIVS_RECD;

To see which privileges are granted to roles

SELECT * FROM USER_ROLE_PRIVS;

How to use Primary key, Foreign Key, Check, Not Null,

Unique Integrity constraints in Oracle

INTEGRITY CONSTRAINTS

Integrity Constraints are used to prevent entry of invalid information into tables. There are five Integrity
Constraints available in Oracle. They are:

• Not Null
• Primary Key
• Foreign Key
• Check
• Unique

Not Null

By default all columns in a table can contain null values. If you want to ensure that a column must
always have a value, i.e. it should not be left blank, then define a NOT NULL constraint on it.

Always be careful in defining NOT NULL constraint on columns, for example in employee table some
employees might have commission and some employees might not have any commission. If you put

Department of Information Technology Page 73

NOT NULL constraint on COMM column then you will not be able insert rows for those employees
whose commission is null. Only put NOT NULL constraint on those column which are essential for
example in EMP table ENAME column is a good candidate for NOT NULL constraint.

Primary Key

Each table can have one primary key, which uniquely identifies each row in a table and ensures that no
duplicate rows exist. Use the following guidelines when selecting a primary key:

• Whenever practical, use a column containing a sequence number. It is a simple way to satisfy all
the other guidelines.

• Minimize your use of composite primary keys. Although composite primary keys are allowed,
they do not satisfy all of the other recommendations. For example, composite primary key values
are long and cannot be assigned by sequence numbers.

• Choose a column whose data values are unique, because the purpose of a primary key is to
uniquely identify each row of the table.

• Choose a column whose data values are never changed. A primary key value is only used to
identify a row in the table, and its data should never be used for any other purpose. Therefore,
primary key values should rarely or never be changed.

• Choose a column that does not contain any nulls. A PRIMARY KEY constraint, by definition,
does not allow any row to contain a null in any column that is part of the primary key.

• Choose a column that is short and numeric. Short primary keys are easy to type. You can use
sequence numbers to easily generate numeric primary keys.

For example in EMP table EMPNO column is a good candidate for PRIMARY KEY.

To define a primary key on a table give the following command.

alter table emp add constraint emppk primary key (empno);

The above command will succeed only if the existing values are compliant i.e. no duplicates are there in
EMPNO column. If EMPNO column contains any duplicate value then the above command fails and
Oracle returns an error indicating of non compliant values.

Whenever you define a PRIMARY KEY Oracle automatically creates a index on that column. If an
Index already exist on that column then Oracle uses that index.

FOREIGN KEY

On whichever column you put FOREIGN KEY constraint then the values in that column must refer to
existing values in the other table. A foreign key column can refer to primary key or unique key column
of other tables. This Primary key and Foreign key relationship is also known as PARENT-CHILD
relationship i.e. the table which has Primary Key is known as PARENT table and the table which has
Foreign key is known as CHILD table. This relationship is also known as REFERENTIAL
INTEGRITY.

Department of Information Technology Page 74

The following shows an example of parent child relationship:

Here EMPNO in attendance table is a foreign key referring to EMPNO of EMP table.

alter table attendance add constraint empno_fk
 foreign key (empno) references emp(empno);

The above command succeeds only if EMPNO column in ATTENDANCE table contains values which
are existing in EMPNO column of EMP table. If any value does not exist then the above statement fails
and Oracle returns an error indicating non compliant values.

Some points to remember for referential integrity

• You cannot delete a parent record if any existing child record is there. If you have to first delete
the child record before deleting the parent record. In the above example you cannot delete row of
employee no. 101 since it’s child exist in the ATTENDANCE table. However, you can delete the
row of employee no. 103 since no child record exist for this employee in ATTENDANCE table.
If you define the FOREIGN KEY with ON DELETE CASCADE option then you can delete the
parent record and if any child record exist it will be automatically deleted.

To define a foreign key constraint with ON DELETE CASCADE option give the following command.

ALTER TABLE attendance ADD CONSTRAINT empno_fk
 FOREIGN KEY (empno) REFERENCES emp(empno)
 ON DELETE CASCADE;

From Oracle version 9i, Oracle has also given a new feature i.e. ON DELETE SET NULL . That is it
sets the value for foreign key to null whenever the parent record is deleted.

Department of Information Technology Page 75

To define a foreign key constraint with ON DELETE SET NULL option give the following command.

ALTER TABLE attendance ADD CONSTRAINT empno_fk
 FOREIGN KEY (empno) REFERENCES emp(empno)
 ON DELETE SET NULL;

• You also cannot drop the parent table without first dropping the FOREIGN KEY constraint from
attendance table. However if you give CASCADE CONSTRAINTS option in DROP TABLE
statement then Oracle will automatically drop the references and then drops the table.

CHECK

Use the check constraint to validate values entered into a column. For example in the above
ATTENDANCE table, the DAYS column should not contain any value more than 31. For this you can
define a CHECK constraint as given below:

alter table attendance add constraint dayscheck
 check (days <= 31);

Similarly if you want the salaries entered in to SAL column of employee table should be between 1000
and 20000 then you can define a CHECK constraint on EMP table as follows

alter table emp add constraint sal_check
 check (sal between 1000 and 20000);

You can define as many check constraints on a single column as you want there are no restrictions on
number of check constraints.

UNIQUE KEY

Unique Key constraint is same as primary key i.e. it does not accept duplicate values, except the
following differences

• There can be only on Primary key per table. Whereas, you can have as many Unique Keys per
table as you want.

• Primary key does not accept NULL values whereas; unique key columns can be left blank.
• You can also refer to Unique key from Foreign key of other tables.

On which columns you should put Unique Key Constraint?

It depends on situations, first situation is suppose you have already defined a Primary key constraint on
one column and now you have another column which also should not contain any duplicate values,
Since a table can have only one primary key, you can define Unique Key constraint on these columns.
Second situation is when a column should not contain any duplicate value but it should also be left

Department of Information Technology Page 76

blank. For example in the EMP table IDNO is a good candidate for Unique Key because all the IDNO’s
are unique but some employees might not have ID Card so you want to leave this column blank.

To define a UNIQUE KEY constraint on an existing table give the following command.

alter table emp add constraint id_unique unique (idno);

Again the above command will execute successfully if IDNO column contains complying values
otherwise you have to remove non complying values and then add the constraint.

Default Values and Managing Constraints in Oracle

DEFAULT

You can also specify the DEFAULT value for columns i.e. when user does not enter anything in that
column then that column will have the default value. For example in EMP table suppose most of the
employees are from Hyderabad, then you can put this as default value for CITY column. Then while
inserting records if user doesn’t enter anything in the CITY column then the city column will have
Hyderabad.

To define default value for columns create the table as given below

create table emp (empno number(5),
 name varchar2(20),
 sal number(10,2),
 city varchar2(20) default ‘Hyd’);

Now, when user inserts record like this

insert into emp values (101,’Sami’,2000,’Bom’);

Then the city column will have value ‘Bom ‘. But when user inserts a record like this

insert into emp (empno,name,sal) values (102,’Ashi’,4000);

Then the city column will have value ‘Hyd’. Since it is the default.

Example:

Defining Constraints in CREATE TABLE statement:

Department of Information Technology Page 77

create table emp (empno number(5) constraint emppk
 Primary key,
 ename varchar2(20) constraint namenn
 not null,
 sal number(10,2) constraint salcheck
 check (sal between 1000 and 20000)
 idno varchar2(20) constraint id_unique
 unique);

create table attendance (empno number(5) constraint empfk
 references emp (empno)
 on delete cascade,
 month varchar2(10),
 days number(2) constraint dayscheck
 check (days <= 31));

The name of the constraints are optional. If you don’t define the names then oracle generates the names
randomly like ‘SYS_C1234’

Another way of defining constraint in CREATE TABLE statement:

create table emp (empno number(5),
 ename varchar2(20) not null,
 sal number(10,2),
 idno varchar2(20),
 constraint emppk Primary key (empno)
 constraint salcheck check (sal between 1000 and 20000)
 constraint id_unique unique (idno));

create table attendance (empno number(5),
 month varchar2(10),
 days number(2),
constraint empfk foreign key (empno)
 references emp (empno)
 on delete cascade
 constraint dayscheck
 check (days <= 31));

Deferring Constraint Checks

You may wish to defer constraint checks on UNIQUE and FOREIGN keys if the data you are working
with has any of the following characteristics:

Department of Information Technology Page 78

• Tables are snapshots
• Tables that contain a large amount of data being manipulated by another application, which may or may

not return the data in the same order
• Update cascade operations on foreign keys

When dealing with bulk data being manipulated by outside applications, you can defer checking
constraints for validity until the end of a transaction.

Ensure Constraints Are Created Deferrable.

After you have identified and selected the appropriate tables, make sure their FOREIGN, UNIQUE and
PRIMARY key constraints are created deferrable. You can do so by issuing a statement similar to the
following:

create table attendance (empno number(5),
 month varchar2(10),
 days number(2),
 constraint empfk foreign key (empno)
 references emp (empno)
 on delete cascade
 DEFERRABLE
 constraint dayscheck
 check (days <= 31));

Now give the following statement

set constraint empfk deferred;
update attendance set empno=104 where empno=102;
insert into emp values (104,’Sami’,4000,’A123’);
commit;

You can check for constraint violations before committing by issuing the SET CONSTRAINTS ALL
IMMEDIATE statement just before issuing the COMMIT. If there are any problems with a constraint,
this statement will fail and the constraint causing the error will be identified. If you commit while
constraints are violated, the transaction will be rolled back and you will receive an error message.

 ENABLING AND DISABLING CONSTRIANTS

You can enable and disable constraints at any time.

To enable and disable constraints the syntax is:

ALTER TABLE <TABLE_NAME> ENABLE/DISABLE
 CONSTRAINT <CONSTRAINT_NAME>

Department of Information Technology Page 79

For example to disable primary key of EMP table give the following statement

alter table emp disable constraint emppk;

And to enable it again, give the following statement

alter table emp enable constraint emppk;

 Dropping constraints

You can drop constraint by using ALTER TABLE DROP constraint statement.

For example to drop Unique constraint from emp table, give the following statement

alter table emp drop constraint id_unique;

To drop primary key constraint from emp table.

alter table emp drop constraint emppk;

The above statement will succeed only if the foreign key is first dropped otherwise you have to first drop
the foreign key and then drop the primary key. If you want to drop primary key along with the foreign
key in one statement then CASCADE CONSTRAINT statement like this:

alter table emp drop constraint emppk cascade;

 Viewing Information about constraints

To see information about constraints, you can query the following data dictionary tables.

select * from user_constraints;
select * from user_cons_columns;

Default Values and Managing Constraints in Oracle

DEFAULT

You can also specify the DEFAULT value for columns i.e. when user does not enter anything in that
column then that column will have the default value. For example in EMP table suppose most of the
employees are from Hyderabad, then you can put this as default value for CITY column. Then while
inserting records if user doesn’t enter anything in the CITY column then the city column will have
Hyderabad.

To define default value for columns create the table as given below:

Department of Information Technology Page 80

create table emp (empno number(5),
 name varchar2(20),
 sal number(10,2),
 city varchar2(20) default ‘Hyd’);

Now, when user inserts record like this

insert into emp values (101,’Sami’,2000,’Bom’);

Then the city column will have value ‘Bom ‘. But when user inserts a record like this

insert into emp (empno,name,sal) values (102,’Ashi’,4000);

Then the city column will have value ‘Hyd’. Since it is the default.

Examples:

Defining Constraints in CREATE TABLE statement:

create table emp (empno number(5) constraint emppk
 Primary key,
 ename varchar2(20) constraint namenn
 not null,
 sal number(10,2) constraint salcheck
 check (sal between 1000 and 20000)
 idno varchar2(20) constraint id_unique
 unique);

create table attendance (empno number(5) constraint empfk
 references emp (empno)
 on delete cascade,
 month varchar2(10),
 days number(2) constraint dayscheck
 check (days <= 31));

The name of the constraints is optional. If you don’t define the names then oracle generates the names
randomly like ‘SYS_C1234’

Another way of defining constraint in CREATE TABLE statement:

create table emp (empno number(5),
 ename varchar2(20) not null,
 sal number(10,2),
 idno varchar2(20),
 constraint emppk Primary key (empno)

Department of Information Technology Page 81

 constraint salcheck check (sal between 1000 and 20000)
 constraint id_unique unique (idno));

create table attendance (empno number(5),
 month varchar2(10),
 days number(2),
constraint empfk foreign key (empno)
 references emp (empno)
 on delete cascade
 constraint dayscheck
 check (days <= 31));

 Deferring Constraint Checks

You may wish to defer constraint checks on UNIQUE and FOREIGN keys if the data you are working
with has any of the following characteristics:

• Tables are snapshots
• Tables that contain a large amount of data being manipulated by another application, which may or may

not return the data in the same order
• Update cascade operations on foreign keys

When dealing with bulk data being manipulated by outside applications, you can defer checking
constraints for validity until the end of a transaction.

Ensure Constraints Are Created Deferrable

After you have identified and selected the appropriate tables, make sure their FOREIGN, UNIQUE and
PRIMARY key constraints are created deferrable. You can do so by issuing a statement similar to the
following:

create table attendance (empno number(5),
 month varchar2(10),
 days number(2),
 constraint empfk foreign key (empno)
 references emp (empno)
 on delete cascade
 DEFERRABLE
 constraint dayscheck
 check (days <= 31));

Now give the following statement

set constraint empfk deferred;
update attendance set empno=104 where empno=102;

Department of Information Technology Page 82

insert into emp values (104,’Sami’,4000,’A123’);
commit;

You can check for constraint violations before committing by issuing the SET CONSTRAINTS ALL
IMMEDIATE statement just before issuing the COMMIT. If there are any problems with a constraint,
this statement will fail and the constraint causing the error will be identified. If you commit while
constraints are violated, the transaction will be rolled back and you will receive an error message.

 ENABLING AND DISABLING CONSTRIANTS

You can enable and disable constraints at any time.

To enable and disable constraints the syntax is

ALTER TABLE <TABLE_NAME> ENABLE/DISABLE
 CONSTRAINT <CONSTRAINT_NAME>

For example to disable primary key of EMP table give the following statement

alter table emp disable constraint emppk;

And to enable it again, give the following statement

alter table emp enable constraint emppk;

 Dropping constraints

You can drop constraint by using ALTER TABLE DROP constraint statement.

For example to drop Unique constraint from emp table, give the following statement

alter table emp drop constraint id_unique;

To drop primary key constraint from emp table.

alter table emp drop constraint emppk;

The above statement will succeed only if the foreign key is first dropped otherwise you have to first drop
the foreign key and then drop the primary key. If you want to drop primary key along with the foreign
key in one statement then CASCADE CONSTRAINT statement like this

alter table emp drop constraint emppk cascade;

Department of Information Technology Page 83

Viewing Information about constraints

To see information about constraints, you can query the following data dictionary tables.

select * from user_constraints;
select * from user_cons_columns;

Default Values and Managing Constraints in Oracle

DEFAULT

You can also specify the DEFAULT value for columns i.e. when user does not enter anything in that
column then that column will have the default value. For example in EMP table suppose most of the
employees are from Hyderabad, then you can put this as default value for CITY column. Then while
inserting records if user doesn’t enter anything in the CITY column then the city column will have
Hyderabad.

To define default value for columns create the table as given below

create table emp (empno number(5),
 name varchar2(20),
 sal number(10,2),
 city varchar2(20) default ‘Hyd’);

Now, when user inserts record like this-

insert into emp values (101,’Sami’,2000,’Bom’);

Then the city column will have value ‘Bom ‘. But when user inserts a record like this

insert into emp (empno,name,sal) values (102,’Ashi’,4000);

Then the city column will have value ‘Hyd’. Since it is the default.

Examples:

Defining Constraints in CREATE TABLE statement:

create table emp (empno number(5) constraint emppk
 Primary key,
 ename varchar2(20) constraint namenn
 not null,
 sal number(10,2) constraint salcheck
 check (sal between 1000 and 20000)

Department of Information Technology Page 84

 idno varchar2(20) constraint id_unique
 unique);

create table attendance (empno number(5) constraint empfk
 references emp (empno)
 on delete cascade,
 month varchar2(10),
 days number(2) constraint dayscheck
 check (days <= 31));

The name of the constraints is optional. If you don’t define the names then oracle generates the names
randomly like ‘SYS_C1234’

Another way of defining constraint in CREATE TABLE statement:

create table emp (empno number(5),
 ename varchar2(20) not null,
 sal number(10,2),
 idno varchar2(20),
 constraint emppk Primary key (empno)
 constraint salcheck check (sal between 1000 and 20000)
 constraint id_unique unique (idno));

create table attendance (empno number(5),
 month varchar2(10),
 days number(2),
constraint empfk foreign key (empno)
 references emp (empno)
 on delete cascade
 constraint dayscheck
 check (days <= 31));

Deferring Constraint Checks

You may wish to defer constraint checks on UNIQUE and FOREIGN keys if the data you are working
with has any of the following characteristics:

• Tables are snapshots
• Tables that contain a large amount of data being manipulated by another application, which may or may

not return the data in the same order
• Update cascade operations on foreign keys

When dealing with bulk data being manipulated by outside applications, you can defer checking
constraints for validity until the end of a transaction.

Department of Information Technology Page 85

Ensure Constraints Are Created Deferrable.

After you have identified and selected the appropriate tables, make sure their FOREIGN, UNIQUE and
PRIMARY key constraints are created deferrable. You can do so by issuing a statement similar to the
following:

create table attendance (empno number(5),
 month varchar2(10),
 days number(2),
 constraint empfk foreign key (empno)
 references emp (empno)
 on delete cascade
 DEFERRABLE
 constraint dayscheck
 check (days <= 31));

Now give the following statement-

set constraint empfk deferred;
update attendance set empno=104 where empno=102;
insert into emp values (104,’Sami’,4000,’A123’);
commit;

You can check for constraint violations before committing by issuing the SET CONSTRAINTS ALL
IMMEDIATE statement just before issuing the COMMIT. If there are any problems with a constraint,
this statement will fail and the constraint causing the error will be identified. If you commit while
constraints are violated, the transaction will be rolled back and you will receive an error message.

 ENABLING AND DISABLING CONSTRIANTS

You can enable and disable constraints at any time.

To enable and disable constraints the syntax is

ALTER TABLE <TABLE_NAME> ENABLE/DISABLE
 CONSTRAINT <CONSTRAINT_NAME>

For example to disable primary key of EMP table give the following statement

alter table emp disable constraint emppk;

And to enable it again, give the following statement

alter table emp enable constraint emppk;

Department of Information Technology Page 86

 Dropping constraints

You can drop constraint by using ALTER TABLE DROP constraint statement.

For example to drop Unique constraint from emp table, give the following statement-

alter table emp drop constraint id_unique;

To drop primary key constraint from emp table.

alter table emp drop constraint emppk;

The above statement will succeed only if the foreign key is first dropped otherwise you have to first drop
the foreign key and then drop the primary key. If you want to drop primary key along with the foreign
key in one statement then CASCADE CONSTRAINT statement like this:

alter table emp drop constraint emppk cascade;

 Viewing Information about constraints

To see information about constraints, you can query the following data dictionary tables.

select * from user_constraints;
select * from user_cons_columns;

How to Create and Manage Views in Oracle

Views

Views are known as logical tables. They represent the data of one of more tables. A view derives its data
from the tables on which it is based. These tables are called base tables. Views can be based on actual
tables or another view also.

Whatever DML operations you performed on a view they actually affect the base table of the view. You
can treat views same as any other table. You can Query, Insert, Update and delete from views, just as
any other table.

Views are very powerful and handy since they can be treated just like any other table but do not occupy
the space of a table.

The following sections explain how to create, replace, and drop views using SQL commands.

Department of Information Technology Page 87

Creating Views

Suppose we have EMP and DEPT table. To see the empno, ename, sal, deptno, department name and
location we have to give a join query like this.

select e.empno,e.ename,e.sal,e.deptno,d.dname,d.loc
 From emp e, dept d where e.deptno=d.deptno;

So everytime we want to see emp details and department names where they are working we have to give
a long join query. Instead of giving this join query again and again, we can create a view on this table by
using a CREATE VIEW command given below

create view emp_det as select e.empno,
e.ename,e.sal,e.deptno,d.dname,d.loc
 from emp e, dept d where e.deptno=d.deptno;

Now to see the employee details and department names we don’t have to give a join query, we can just
type the following simple query.

select * from emp_det;

This will show same result as you have type the long join query. Now you can treat this EMP_DET
view same as any other table.

For example, suppose all the employee working in Department No. 10 belongs to accounts department
and most of the time you deal with these people. So every time you have to give a DML or Select
statement you have to give a WHERE condition likeWHERE DEPTNO=10. To avoid this, you can
create a view as given below:

CREATE VIEW accounts_staff AS
 SELECT Empno, Ename, Deptno
 FROM Emp
 WHERE Deptno = 10
 WITH CHECK OPTION CONSTRAINT ica_Accounts_cnst;

Now to see the account people you don’t have to give a query with where condition you can just type the
following query.

select * from accounts_staff;

select sum(sal) from accounst_staff;

select max(sal) from accounts_staff;

As you can see how views make things easier.

Department of Information Technology Page 88

The query that defines the ACCOUNTS_STAFF view references only rows in department 10.
Furthermore, WITH CHECK OPTION creates the view with the constraint that INSERT and UPDATE
statements issued against the view are not allowed to create or result in rows that the view cannot select.

Considering the example above, the following INSERT statement successfully inserts a row into the
EMP table through the ACCOUNTS_STAFF view:

INSERT INTO Accounts_staff VALUES (110, 'ASHI', 10);

However, the following INSERT statement is rolled back and returns an error because it attempts to
insert a row for department number 30, which could not be selected using the ACCOUNTS_STAFF
view:

INSERT INTO Accounts_staff VALUES (111, 'SAMI', 30);

Creating FORCE VIEWS

A view can be created even if the defining query of the view cannot be executed, as long as the
CREATE VIEW command has no syntax errors. We call such a view a view with errors. For example, if
a view refers to a non-existent table or an invalid column of an existing table, or if the owner of the view
does not have the required privileges, then the view can still be created and entered into the data
dictionary.

You can only create a view with errors by using the FORCE option of the CREATE VIEW command:

CREATE FORCE VIEW AS ...;

When a view is created with errors, Oracle returns a message and leaves the status of the view as
INVALID. If conditions later change so that the query of an invalid view can be executed, then the view
can be recompiled and become valid. Oracle dynamically compiles the invalid view if you attempt to
use it.

Replacing/Altering Views

To alter the definition of a view, you must replace the view using one of the following methods:

• A view can be dropped and then re-created. When a view is dropped, all grants of corresponding view
privileges are revoked from roles and users. After the view is re-created, necessary privileges must be
regranted.

• A view can be replaced by redefining it with a CREATE VIEW statement that contains the OR
REPLACE option. This option replaces the current definition of a view, but preserves the present security
authorizations.

For example, assume that you create the ACCOUNTS_STAFF view, as given in a previous example.
You also grant several object privileges to roles and other users. However, now you realize that you
must redefine the ACCOUNTS_STAFF view to correct the department number specified in the

Department of Information Technology Page 89

WHERE clause of the defining query, because it should have been 30. To preserve the grants of object
privileges that you have made, you can replace the current version of the ACCOUNTS_STAFF view
with the following statement:

CREATE OR REPLACE VIEW Accounts_staff AS
 SELECT Empno, Ename, Deptno
 FROM Emp
 WHERE Deptno = 30
 WITH CHECK OPTION CONSTRAINT ica_Accounts_cnst;

Replacing a view has the following effects:

• Replacing a view replaces the view's definition in the data dictionary. All underlying objects referenced
by the view are not affected.

• If previously defined but not included in the new view definition, then the constraint associated with the
WITH CHECK OPTION for a view's definition is dropped.

• All views and PL/SQL program units dependent on a replaced view become invalid.

With some restrictions, rows can be inserted into, updated in, or deleted from a base table using a view.
The following statement inserts a new row into the EMP table using the ACCOUNTS_STAFF view:

INSERT INTO Accounts_staff
 VALUES (199, 'ABID', 30);

Restrictions on DML operations for views use the following criteria in the order listed:

1. If a view is defined by a query that contains SET or DISTINCT operators, a GROUP BY clause, or a
group function, then rows cannot be inserted into, updated in, or deleted from the base tables using the
view.

2. If a view is defined with WITH CHECK OPTION, then a row cannot be inserted into, or updated in, the
base table (using the view), if the view cannot select the row from the base table.

3. If a NOT NULL column that does not have a DEFAULT clause is omitted from the view, then a row
cannot be inserted into the base table using the view.

4. If the view was created by using an expression, such as DECODE(deptno, 10, "SALES", ...), then rows
cannot be inserted into or updated in the base table using the view.

The constraint created by WITH CHECK OPTION of the ACCOUNTS_STAFF view only allows rows
that have a department number of 10 to be inserted into, or updated in, the EMP table. Alternatively,
assume that the ACCOUNTS_STAFF view is defined by the following statement (that is, excluding the
DEPTNO column):

CREATE VIEW Accounts_staff AS
 SELECT Empno, Ename
 FROM Emp

Department of Information Technology Page 90

 WHERE Deptno = 10
 WITH CHECK OPTION CONSTRAINT ica_Accounts_cnst;

Considering this view definition, you can update the EMPNO or ENAME fields of existing records, but
you cannot insert rows into the EMP table through the ACCOUNTS_STAFF view because the view
does not let you alter the DEPTNO field. If you had defined a DEFAULT value of 10 on the DEPTNO
field, then you could perform inserts.

If you don’t want any DML operations to be performed on views, create them WITH READ ONLY
option. Then no DML operations are allowed on views.

Referencing Invalid Views

When a user attempts to reference an invalid view, Oracle returns an error message to the user.

ORA-04063: view 'view_name' has errors

This error message is returned when a view exists but is unusable due to errors in its query (whether it
had errors when originally created or it was created successfully but became unusable later because
underlying objects were altered or dropped).

 Dropping Views

Use the SQL command DROP VIEW to drop a view. For example:

DROP VIEW Accounts_staff;

Modifying a Join View

Oracle allows you, with some restrictions, to modify views that involve joins. Consider the following
simple view:

CREATE VIEW Emp_view AS
 SELECT Ename, Empno, deptno FROM Emp;

This view does not involve a join operation. If you issue the SQL statement:

UPDATE Emp_view SET Ename = 'SHAHRYAR' WHERE Empno = 109;

then the EMP base table that underlies the view changes, and employee 109's name changes from ASHI
to SHAHRYAR in the EMP table.

However, if you create a view that involves a join operation, such as:

Department of Information Technology Page 91

CREATE VIEW Emp_dept_view AS
 SELECT e.Empno, e.Ename, e.Deptno, e.Sal, d.Dname, d.Loc
 FROM Emp e, Dept d /* JOIN operation */
 WHERE e.Deptno = d.Deptno
 AND d.Loc IN ('HYD', 'BOM', 'DEL');

There are restrictions on modifying either the EMP or the DEPT base table through this view.

A modifiable join view is a view that contains more than one table in the top-level FROM clause of the
SELECT statement, and that does not contain any of the following:

• DISTINCT operator
• Aggregate functions: AVG, COUNT, GLB, MAX, MIN, STDDEV, SUM, or VARIANCE
• Set operations: UNION, UNION ALL, INTERSECT, MINUS
• GROUP BY or HAVING clauses
• START WITH or CONNECT BY clauses
• ROWNUM pseudo column

Any UPDATE, INSERT, or DELETE statement on a join view can modify only one underlying base
table.

The following example shows an UPDATE statement that successfully modifies the
EMP_DEPT_VIEW view:

UPDATE Emp_dept_view
 SET Sal = Sal * 1.10
 WHERE Deptno = 10;

The following UPDATE statement would be disallowed on the EMP_DEPT_VIEW view:

UPDATE Emp_dept_view
 SET Loc = 'BOM'
 WHERE Ename = 'SAMI';

This statement fails with an ORA-01779 error ("cannot modify a column which maps to a non key-
preserved table"), because it attempts to modify the underlying DEPT table, and the DEPT table is not
key preserved in the EMP_DEPT view.

In general, all modifiable columns of a join view must map to columns of a key-preserved table. If the
view is defined using the WITH CHECK OPTION clause, then all join columns and all columns of
repeated tables are not modifiable.

So, for example, if the EMP_DEPT view were defined using WITH CHECK OPTION, then the
following UPDATE statement would fail:

Department of Information Technology Page 92

UPDATE Emp_dept_view
 SET Deptno = 10
 WHERE Ename = 'SAMI';

The statement fails because it is trying to update a join column.

Deleting from a Join View

You can delete from a join view provided there is one and only one key-preserved table in the join.

The following DELETE statement works on the EMP_DEPT view:

DELETE FROM Emp_dept_view
 WHERE Ename = 'SMITH';

This DELETE statement on the EMP_DEPT view is legal because it can be translated to a DELETE
operation on the base EMP table, and because the EMP table is the only key-preserved table in the join.

In the following view, a DELETE operation cannot be performed on the view because both E1 and E2
are key-preserved tables:

CREATE VIEW emp_emp AS
 SELECT e1.Ename, e2.Empno, e1.Deptno
 FROM Emp e1, Emp e2
 WHERE e1.Empno = e2.Empno;

If a view is defined using the WITH CHECK OPTION clause and the key-preserved table is repeated,
then rows cannot be deleted from such a view. For example:

CREATE VIEW Emp_mgr AS
 SELECT e1.Ename, e2.Ename Mname
 FROM Emp e1, Emp e2
 WHERE e1.mgr = e2.Empno
 WITH CHECK OPTION;

No deletion can be performed on this view because the view involves a self-join of the table that is key
preserved.

Inserting into a Join View

The following INSERT statement on the EMP_DEPT view succeeds, because only one key-preserved
base table is being modified (EMP), and 40 is a valid DEPTNO in the DEPT table (thus satisfying the
FOREIGN KEY integrity constraint on the EMP table).

Department of Information Technology Page 93

INSERT INTO Emp_dept (Ename, Empno, Deptno)
 VALUES ('ASHU', 119, 40);

The following INSERT statement fails for the same reason: This UPDATE on the base EMP table
would fail: the FOREIGN KEY integrity constraint on the EMP table is violated.

INSERT INTO Emp_dept (Ename, Empno, Deptno)
 VALUES ('ASHU', 110, 77);

The following INSERT statement fails with an ORA-01776 error ("cannot modify more than one base
table through a view").

INSERT INTO Emp_dept (Ename, Empno, Deptno)
 VALUES (110, 'TANNU’, 'BOMBAY');

An INSERT cannot, implicitly or explicitly, refer to columns of a non-key-preserved table. If the join
view is defined using the WITH CHECK OPTION clause, then you cannot perform an INSERT to it.

Listing Information about VIEWS

To see how many views are there in your schema. Give the following query.

select * from user_views;

To see which columns are updatable in join views.

Data Dictionaries which shows which columns are updatable.

View Name Description

USER_UPDATABLE_COLUMNS Shows all columns in all tables and views in the user's schema that
are modifiable

DBA_UPDATABLE_COLUMNS Shows all columns in all tables and views in the DBA schema that
are modifiable

ALL_UPDATABLE_VIEWS Shows all columns in all tables and views that are modifiable

If you are in doubt whether a view is modifiable, then you can SELECT from the view
USER_UPDATABLE_COLUMNS to see if it is. For example:

SELECT * FROM USER_UPDATABLE_COLUMNS WHERE TABLE_NAME =
'EMP_DEPT_VIEW';

This might return:

OWNER TABLE_NAME COLUMN_NAM UPD
---------- ---------- ---------- -------------------- ------
SCOTT EMP_DEPT EMPNO NO

Department of Information Technology Page 94

SCOTT EMP_DEPT ENAME NO
SCOTT EMP_DEPT DEPTNO NO
SCOTT EMP_DEPT DNAME NO
SCOTT EMP_DEPT LOC NO

5 rows selected.

Using Sequences in Oracle (Auto Increment Feature)

SEQUENCES

A sequence is used to generate numbers in sequence. You can use sequences to insert unique values in
Primary Key and Unique Key columns of tables. To create a sequence gives the CREATE SEQUENCE
statement.

CREATING SEQUENCES

create sequence bills
 start with 1
 increment by 1
 minvalue 1
 maxvalue 100
 cycle
 cache 10';

The above statement creates a sequence bills it will start with 1 and increment by 1. Its maxvalue is 100
i.e. after 100 numbers are generated it will stop if you say NOCYCLE, otherwise if you mention
CYCLE then again it will start with no. 1. You can also specify NOMAXVALUE in that case the
sequence will generate infinite numbers.

The CACHE option is used to cache sequence numbers in System Global Area (SGA). If you say
CACHE 10 then Oracle will cache next 10 numbers in SGA. If you access a sequence number then
oracle will first try to get the number from cache, if it is not found then it reads the next number from
disk. Since reading the disk is time consuming rather than reading from SGA it is always recommended
to cache sequence numbers in SGA. If you say NOCACHE then Oracle will not cache any numbers in
SGA and every time you access the sequence number it reads the number from disk.

 Accessing Sequence Numbers

To generate Sequence Numbers you can use NEXTVAL and CURRVAL for example to get the next
sequence number of bills sequence type the following command.

Select bills.nextval from dual;

Department of Information Technology Page 95

BILLS

1

NEXTVAL gives the next number in sequence. Whereas, CURRVAL returns the current number of the
sequence. This is very handy in situations where you have insert records in Master Detail tables. For
example to insert a record in SALES master table and SALES_DETAILS detail table.

insert into sales (billno,custname,amt)
 values (bills.nextval,’Sami’,2300);

insert into sales_details (billno,itemname,qty,rate) values
 (bills.currval,’Onida’,10,13400);

Sequences are usually used as DEFAULT Values for table columns to automatically insert unique
numbers. For Example,

create table invoices (invoice_no number(10) default bills.nextval,
 invoice_date date default sysdate,
 customer varchar2(100),
 invoice_amt number(12,2));

Now whenever you insert rows into invoices table ommiting invoice_no as follows

insert into invoices (customer,invoice_amt) values ('A to Z Traders',5000);

Oracle will insert invoice_no from bills sequence

 ALTERING SEQUENCES

To alter sequences use ALTER SEQUENCE statement. For example to alter the bill sequence
MAXVALUE give the following command.

ALTER SEQUENCE BILLS
 MAXVALUE 200;

Except Starting Value, you can alter any other parameter of a sequence. To change START WITH
parameter you have to drop and recreate the sequence.

 DROPPING SEQUENCES

To drop sequences use DROP SEQUENCE command. For example to drop bills sequence gives the
following statement

drop sequence bills;

Department of Information Technology Page 96

Listing Information about Sequences

To see how many sequences are there in your schema and what are their settings give the following
command.

select * from user_sequences;

Using Synonyms in Oracle

SYNONYMS

A synonym is an alias for a table, view, snapshot, sequence, procedure, function, or package.

There are two types to SYNONYMS they are

 PUBLIC SYNONYM
 PRIVATE SYNONYM

If you a create a synonym as public then it can be accessed by any other user with qualifying the
synonym name i.e. the user doesn’t have to mention the owner name while accessing the synonym.
Nevertheless the other user should have proper privilege to access the synonym. Private synonyms need
to be qualified with owner names.

 CREATING SYNONYMS

To create a synonym for SCOTT emp table give the following command.

create synonym employee for scott.emp;

A synonym can be referenced in a DML statement the same way that the underlying object of the
synonym can be referenced. For example, if a synonym named EMPLOYEE refers to a table or view,
then the following statement is valid:

select * from employee;

Suppose you have created a function known as TODAY which returns the current date and time. Now
you have granted execute permission on it to every other user of the database. Now these users can
execute this function but when the call they have to give the following command:

select scott.today from dual;

Now if you create a public synonym on it then other users don’t have to qualify the function name with
owner’s name. To define a public synonym gives the following command.

Department of Information Technology Page 97

create public synonym today for scott.today;

Now the other users can simply type the following command to access the function.

select today from dual;

Dropping Synonyms

To drop a synonym uses the DROP SYNONYM statement. For example, to drop EMPLOYEE synonym
gives the statement

drop synonym employee;

Listing information about synonyms

To see synonyms information give the following statement.

select * from user_synonyms;

Managing Indexes and Clusters in Oracle

INDEXES

Use indexes to speed up queries. Indexes speeds up searching of information in tables. So create indexes
on those columns which are frequently used in WHERE conditions. Indexes are helpful if the operations
return only small portion of data i.e. less than 15% of data is retrieved from tables.

Follow these guidelines for creating indexes

• Do not create indexes on small tables i.e. where number of rows is less. (Full table scan itself
will be faster if table is small)

• Do not create indexes on those columns which contain many null values.
• Do not create BTree index on those columns which contain many repeated values. In this case

create BITMAP indexes on these columns.
• Limit the number of indexes on tables because, although they speed up queries, but at the same

time DML operations becomes very slow as all the indexes have to updated whenever an Update,
Delete or Insert takes place on tables.

Creating Indexes

To create an Index give the create index command. For example the following statement creates an
index on empno column of emp table.

Department of Information Technology Page 98

create index empno_ind on emp (empno);

If two columns are frequently used together in WHERE conditions then create a composite index on
these columns. For example, suppose we use EMPNO and DEPTNO oftenly together in WHERE
condition. Then create a composite index on this column as given below:

create index empdept_ind on emp (empno,deptno);

The above index will be used whenever you use empno or deptno column together, or you just use
empno column in WHERE condition. The above index will not be used if you use only deptno column
alone.

BITMAP INDEXES

Create Bitmap indexes on those columns which contains many repeated values and when tables are
large. City column in EMP table is a good canditate for Bitmap index because it contains many repeated
values. To create a composite index gives the following command.

create bitmap index city_ind on emp (city);

FUNCTION BASED Indexes

Function Based indexes are built on expressions rather than on column values. For example if you
frequently use the expression SAL+COMM in WHERE conditions then create a Function base index on
this expression like this:

create index salcomm_ind on emp (sal+comm);

Now, whenever you use the expression SAL+COMM in where condition then oracle will use
SALCOMM_IND index.

DROPPING INDEXES

To drop indexes use DROP INDEX statement. For example to drop SALCOMM_IND give the
following statement:

drop index salcomm_ind;

Listing Information about indexes

To see how many indexes are there in your schema and its information, give the following statement:

select * from user_indexes;

Department of Information Technology Page 99

CLUSTERS

If you two are more tables are joined together on a single column and most of the time you issue join
queries on them, then consider creating a cluster of these tables.

A cluster is a group tables that share the same data blocks i.e. all the tables are physically stored
together.

For example EMP and DEPT table are joined on DEPTNO column. If you cluster them, Oracle
physically stores all rows for each department from both the emp and dept tables in the same data
blocks.

• Since cluster stores related rows of different tables in same data blocks, Disk I/O is reduced and
access time improves for joins of clustered tables.

• Each cluster key value is stored only once each in the cluster and the cluster index, no matter
how many rows of different tables contain the value.

Therefore, less storage might be required to store related table and index data in a cluster than is
necessary in non-clustered table format.

CREATING A CLUSTER

To create clustered tables, first, create a cluster and create index on it. Then create tables in it.

For example to create a cluster of EMP and DEPT tables in which the DEPTNO will be cluster key, first
create the cluster by typing the following command.

create cluster emp_dept (deptno number(2));

Then create index on it.

create index on cluster emp_dept;

Now create table in the cluster like this

create table dept (deptno number(2),
 name varchar2(20),
 loc varchar2(20))
 cluster emp_dept (deptno);

create table emp (empno number(5),
 name varchar2(20),

Department of Information Technology Page 100

 sal number(10,2),
 deptno number(2)) cluster emp_dept (deptno)

Dropping Clusters

To drop a cluster use DROP CLUSTER statement. For example to drop the emp_dept cluster give the
following command:

drop cluster emp_dept;

This will drop the cluster, if the cluster is empty i.e. no tables are existing it. If tables are there in the
cluster first drop the tables and then drop the cluster. If you want to drop the cluster even when tables
are there then give the following command.

drop cluster emp_dept including tables;

Listing Information about Clusters

To see how many clusters are there in your schema, give the following statement:

select * from user_clusters;

To see which tables are parts of a cluster, give the following command:

select * from tab

TABLE_NAME TYPE CLUSTER_ID
--------------------- ------- -------------------
EMP TABLE 1
SALGRADE TABLE
CUSTOMER TABLE
DEPT TABLE 1

In the above example notice the CLUSTER_ID column, for EMP and DEPT table the cluster_id is 1.
That means these tables are in cluster whose cluster_id is 1. You can see the cluster_id’s name in
USER_CLUSTERS table.

Department of Information Technology Page 101

Assignment

1. For the following relation schema:
employee(employee-name, street, city)

works(employee-name, company-name, salary)

company(company-name, city)

manages(employee-name, manager-name)

Give an expression in SQL for each of the following queries:
a) Find the names, street address, and cities of residence for all employees who work for 'First Bank

Corporation' and earn more than $10,000.
b) Find the names of all employees in the database who live in the same cities as the companies for

which they work.
c) Find the names of all employees in the database who live in the same cities and on the same streets as
 do their managers.
d) Find the names of all employees in the database who do not work for 'First Bank Corporation'.
 Assume that all people work for exactly one company.
e) Find the names of all employees in the database who earn more than every employee of 'Small Bank
 Corporation'. Assume that all people work for at most one company.
f) Assume that the companies may be located in several cities. Find all companies located in every city
 in which 'Small Bank Corporation' is located.
g) Find the names of all employees who earn more than the average salary of all employees of their
 company. Assume that all people work for at most one company.
h) Find the name of the company that has the smallest payroll.

2. Let R=(A, B, C), S=(C, D, E) and let q and r be relations on schema R and s be a relation on schema
 S. Convert the following queries to SQL:

a) {<a> | ∃ b (<a, b> ∈ r ∧ b = 10)}

b) q - r

c) {t | ∃ p ∈ r ∃ q ∈ s(t[A] = p[A] ∧ t[E] = q[E] ∧ p[C] = q[D]}

d) ∠A, C(r) ⋈ ∠C, D(s)

e) r ⋅ s

Department of Information Technology Page 102

PL/SQL (procedural language extension to Structured

Query Language)

In Oracle database management, PL/SQL is a procedural language extension to Structured Query
Language (SQL). The purpose of PL/SQL is to combine database language and procedural programming
language. The basic unit in PL/SQL is called a block, which is made up of three parts: a declarative part,
an executable part, and an exception-building part.

Because PL/SQL allows you to mix SQL statements with procedural constructs, it is possible to use
PL/SQL blocks and subprograms to group SQL statements before sending them to Oracle for execution.
Without PL/SQL, Oracle must process SQL statements one at a time and, in a network environment, this
can affect traffic flow and slow down response time. PL/SQL blocks can be compiled once and stored in
executable form to improve response time.

A PL/SQL program that is stored in a database in compiled form and can be called by name is referred
to as a stored procedure. A PL/SQL stored procedure that is implicitly started when an INSERT,
UPDATE or DELETE statement is issued against an associated table is called a trigger.

 What is so great about PL/SQL anyway?

• PL/SQL is a procedural extension of SQL, making it extremely simple to write procedural code
that includes SQL as if it were a single language. In comparison, most other programming
languages require mapping data types, preparing statements and processing result sets, all of
which require knowledge of specific APIs.

• The data types in PL/SQL are a super-set of those in the database, so you rarely need to perform
data type conversions when using PL/SQL. Ask your average Java or .NET programmer how
they find handling date values coming from a database. They can only wish for the simplicity of
PL/SQL.

• When coding business logic in middle tier applications, a single business transaction may be
made up of multiple interactions between the application server and the database. This adds a
significant overhead associated with network traffic. In comparison, building all the business
logic as PL/SQL in the database means client code needs only a single database call per
transaction, reducing the network overhead significantly.

Department of Information Technology

• Oracle is a multi-platform datab
business logic is located in the database, you are protecting yourself from operating system lock
in.

• Programming languages go in and out of fashion continually. Over the last 35+ years Oracle
databases have remained part of the enterprise landscape. Suggesting that any language is a safer
bet than PL/SQL is rather naive. Placing your business logic in the database makes changing
your client layer much simpler if you like to follow fashion.

• Centralizing application logic enables a higher degree of security and productivity. The use of
Application Program Interfaces (APIs) can abstract complex data structures and security
implementations from client application developers, leaving them free to do wh

PL/SQL Architecture

The PL/SQL language is actually made up of two distinct languages. Procedural code is executed by the
PL/SQL engine, while SQL is sent to the SQL statement executor.

Department of Information Technology

platform database, making PL/SQL and incredibly portable language. If your
business logic is located in the database, you are protecting yourself from operating system lock

Programming languages go in and out of fashion continually. Over the last 35+ years Oracle
tabases have remained part of the enterprise landscape. Suggesting that any language is a safer

bet than PL/SQL is rather naive. Placing your business logic in the database makes changing
your client layer much simpler if you like to follow fashion.

lizing application logic enables a higher degree of security and productivity. The use of
Application Program Interfaces (APIs) can abstract complex data structures and security
implementations from client application developers, leaving them free to do wh

The PL/SQL language is actually made up of two distinct languages. Procedural code is executed by the
PL/SQL engine, while SQL is sent to the SQL statement executor.

Page 103

ase, making PL/SQL and incredibly portable language. If your
business logic is located in the database, you are protecting yourself from operating system lock-

Programming languages go in and out of fashion continually. Over the last 35+ years Oracle
tabases have remained part of the enterprise landscape. Suggesting that any language is a safer

bet than PL/SQL is rather naive. Placing your business logic in the database makes changing

lizing application logic enables a higher degree of security and productivity. The use of
Application Program Interfaces (APIs) can abstract complex data structures and security
implementations from client application developers, leaving them free to do what they do best.

The PL/SQL language is actually made up of two distinct languages. Procedural code is executed by the

Department of Information Technology

For the most part, the tight binding between these
language to most developers.

Overview of PL/SQL Elements

Blocks

Blocks are the organizational unit for all PL/SQL code, whether it is in the form of an anonymous block,
procedure, function, trigger or type. A PL
executable and exception), of which only the executable section is mandatory.

[DECLARE

 -- delarations]

BEGIN

 -- statements

[EXCEPTION

 -- handlers

END;

Based on this definition, the simplest valid

BEGIN

 NULL;

Department of Information Technology

For the most part, the tight binding between these two languages make PL/SQL look like a single

Overview of PL/SQL Elements

Blocks are the organizational unit for all PL/SQL code, whether it is in the form of an anonymous block,
procedure, function, trigger or type. A PL/SQL block is made up of three sections (declaration,
executable and exception), of which only the executable section is mandatory.

Based on this definition, the simplest valid block is shown below, but it doesn't do anything.

Page 104

two languages make PL/SQL look like a single

Blocks are the organizational unit for all PL/SQL code, whether it is in the form of an anonymous block,
/SQL block is made up of three sections (declaration,

block is shown below, but it doesn't do anything.

Department of Information Technology Page 105

END;

The optional declaration section allows variables, types, procedures and functions do be defined for use
within the block. The scope of these declarations is limited to the code within the block itself, or any
nested blocks or procedure calls. The limited scope of variable declarations is shown by the following
two examples. In the first, a variable is declared in the outer block and is referenced successfully in a
nested block. In the second, a variable is declared in a nested block and referenced from the outer block,
resulting in an error as the variable is out of scope.

DECLARE

 l_number NUMBER;

BEGIN

 l_number := 1;

 BEGIN

 l_number := 2;

 END;

END;

/

PL/SQL procedure successfully completed.

BEGIN

 DECLARE

 l_number NUMBER;

 BEGIN

 l_number := 1;

 END;

 l_number := 2;

END;

Department of Information Technology Page 106

/

 l_number := 2;

 *

ERROR at line 8:

ORA-06550: line 8, column 3:

PLS-00201: identifier 'L_NUMBER' must be declared

ORA-06550: line 8, column 3:

PL/SQL: Statement ignored

SQL>

The main work is done in the mandatory executable section of the block, while the optional exception
section is where all error processing is placed. The following two examples demonstrate the usage of
exception handlers for trapping error messages. In the first, there is no exception handler so a query
returning no rows results in an error. In the second the same error is trapped by the exception handler,
allowing the code to complete successfully.

DECLARE

 l_date DATE;

BEGIN

 SELECT SYSDATE

 INTO l_date

 FROM dual

 WHERE 1=2; -- For zero rows

END;

/

DECLARE

*

ERROR at line 1:

ORA-01403: no data found

ORA-06512: at line 4

Department of Information Technology Page 107

DECLARE

 l_date DATE;

BEGIN

 SELECT SYSDATE

 INTO l_date

 FROM dual

 WHERE 1=2; -- For zero rows

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 NULL;

END;

/

PL/SQL procedure successfully completed.

SQL>

Variables and Constants

Variables and constants must be declared for use in procedural and SQL code, although the datatypes
available in SQL are only a subset of those available in PL/SQL. All variables and constants must be
declared before they are referenced. The declarations of variables and constants are similar, but constant
definitions must contain the CONSTANT keyword and must be assigned a value as part of the
definition. Subsequent attempts to assign a value to a constant will result in an error. The following
example shows some basic variable and constant definitions, along with a subsequent assignment of a
value to a constant resulting in an error.

DECLARE

 l_string VARCHAR2(20);

 l_number NUMBER(10);

Department of Information Technology Page 108

 l_con_string CONSTANT VARCHAR2(20) := 'This is a constant.';

BEGIN

 l_string := 'Variable';

 l_number := 1;

 l_con_string := 'This will fail';

END;

/

 l_con_string := 'This will fail';

 *

ERROR at line 10:

ORA-06550: line 10, column 3:

PLS-00363: expression 'L_CON_STRING' cannot be used as an assignment target

ORA-06550: line 10, column 3:

PL/SQL: Statement ignored

SQL>

In addition to standard variable declarations used within SQL, PL/SQL allows variable data types to
match the data types of existing columns, rows or cursors using the %TYPE and %ROWTYPE
qualifiers, making code maintenance much easier. The following code shows each of these definitions in
practice.

DECLARE

 -- Specific column from table.

 l_username all_users.username%TYPE;

 -- Whole record from table.

 l_all_users_row all_users%ROWTYPE;

Department of Information Technology Page 109

 CURSOR c_user_data IS

 SELECT username,

 created

 FROM all_users

 WHERE username = 'SYS';

 -- Record that matches cursor definition.

 l_all_users_cursor_row c_user_data%ROWTYPE;

BEGIN

 -- Specific column from table.

 SELECT username

 INTO l_username

 FROM all_users

 WHERE username = 'SYS';

 DBMS_OUTPUT.put_line('l_username=' || l_username);

 -- Whole record from table.

 SELECT *

 INTO l_all_users_row

 FROM all_users

 WHERE username = 'SYS';

 DBMS_OUTPUT.put_line('l_all_users_row.username=' ||

 l_all_users_row.username);

 DBMS_OUTPUT.put_line('l_all_users_row.user_id=' ||

 l_all_users_row.user_id);

Department of Information Technology Page 110

 DBMS_OUTPUT.put_line('l_all_users_row.created=' ||

 l_all_users_row.created);

 -- Record that matches cursor definition.

 OPEN c_user_data;

 FETCH c_user_data

 INTO l_all_users_cursor_row;

 CLOSE c_user_data;

 DBMS_OUTPUT.put_line('l_all_users_cursor_row.username=' ||

 l_all_users_cursor_row.username);

 DBMS_OUTPUT.put_line('l_all_users_cursor_row.created=' ||

 l_all_users_cursor_row.created);

END;

/

l_username=SYS

l_all_users_row.username=SYS

l_all_users_row.user_id=0

l_all_users_row.created=18-MAR-2004 08:02:17

l_all_users_cursor_row.username=SYS

l_all_users_cursor_row.created=18-MAR-2004 08:02:17

PL/SQL procedure successfully completed.

SQL>

The %TYPE qualifier signifies that the variable datatype should match that of the specified table column,
while the %ROWTYPE qualifier signifies that the variable datatype should be a record structure that
matches the specified table or cursor structure. Notice that the record structures use the dot notation
(variable.column) to reference the individual column data within the record structure.

Department of Information Technology Page 111

Values can be assigned to variables directly using the ":=" assignment operator, via a SELECT ...

INTO statement or when used as OUT or IN OUT parameter from a procedure. All three assignment
methods are shown in the example below.

DECLARE

 l_number NUMBER;

 PROCEDURE add(p1 IN NUMBER,

 p2 IN NUMBER,

 p3 OUT NUMBER) AS

 BEGIN

 p3 := p1 + p2;

 END;

BEGIN

 -- Direct assignment.

 l_number := 1;

 -- Assignment via a select.

 SELECT 1

 INTO l_number

 FROM dual;

 -- Assignment via a procedure parameter.

 add(1, 2, l_number);

END;

/

Using SQL in PL/SQL

The SQL language is fully integrated into PL/SQL, so much so that they are often mistaken as being a
single language by newcomers. It is possible to manuallly code the retrieval of data using explicit
cursors, or let Oracle do the hard work and use implicit cursors. Examples of both explicit implicit
cursors are presented below, all of which rely on the following table definition table.

Department of Information Technology Page 112

CREATE TABLE sql_test (

 id NUMBER(10),

 description VARCHAR2(10)

);

INSERT INTO sql_test (id, description) VALUES (1, 'One');

INSERT INTO sql_test (id, description) VALUES (2, 'Two');

INSERT INTO sql_test (id, description) VALUES (3, 'Three');

COMMIT;

The SELECT ... INTO statement allows data from one or more columns of a specific row to be retrieved
into variables or record structures using an implicit cursor.

SET SERVEROUTPUT ON

DECLARE

 l_description VARCHAR2(10);

BEGIN

 SELECT description

 INTO l_description

 FROM sql_test

 WHERE id = 1;

 DBMS_OUTPUT.put_line('l_description=' || l_description);

END;

/

l_description=One

PL/SQL procedure successfully completed.

Department of Information Technology Page 113

SQL>

The previous example can be recoded to use an explicit cursor a shown below. Notice that the cursor is
now defined in the declaration section and is explicitly opened and closed, making the code larger and a
little ugly.

SET SERVEROUTPUT ON

DECLARE

 l_description VARCHAR2(10);

 CURSOR c_data (p_id IN NUMBER) IS

 SELECT description

 FROM sql_test

 WHERE id = p_id;

BEGIN

 OPEN c_data (p_id => 1);

 FETCH c_data

 INTO l_description;

 CLOSE c_data;

 DBMS_OUTPUT.put_line('l_description=' || l_description);

END;

/

l_description=One

PL/SQL procedure successfully completed.

SQL>

When a query returns multiple rows is can be processed within a loop. The following example uses a
cursor FOR-LOOP to cycle through multiple rows of an implicit cursor. Notice there is no need for a
variable definition as "cur_rec" acts as a pointer to the current record of the cursor.

Department of Information Technology Page 114

SET SERVEROUTPUT ON

BEGIN

 FOR cur_rec IN (SELECT description

 FROM sql_test)

 LOOP

 DBMS_OUTPUT.put_line('cur_rec.description=' || cur_rec.description);

 END LOOP;

END;

/

cur_rec.description=One

cur_rec.description=Two

cur_rec.description=Three

PL/SQL procedure successfully completed.

SQL>

The explicit cursor version of the previous example is displayed below. Once again the cursor
management is all done manually, but this time the exit from the loop must be managed manually also.

SET SERVEROUTPUT ON

DECLARE

 l_description VARCHAR2(10);

 CURSOR c_data IS

 SELECT description

 FROM sql_test;

BEGIN

 OPEN c_data;

 LOOP

Department of Information Technology Page 115

 FETCH c_data

 INTO l_description;

 EXIT WHEN c_data%NOTFOUND;

 DBMS_OUTPUT.put_line('l_description=' || l_description);

 END LOOP;

 CLOSE c_data;

END;

/

l_description=One

l_description=Two

l_description=Three

PL/SQL procedure successfully completed.

SQL>

In most situations the implicit cursors provide a faster and cleaner solution to data retrieval than their
explicit equivalents.

Branching and Conditional Control

The IF-THEN-ELSE and CASE statements allow code to decide on the correct course of action for the
current circumstances. In the following example the IF-THEN-ELSE statement is used to decide if today
is a weekend day.

SET SERVEROUTPUT ON

DECLARE

 l_day VARCHAR2(10);

BEGIN

 l_day := TRIM(TO_CHAR(SYSDATE, 'DAY'));

Department of Information Technology Page 116

 IF l_day IN ('SATURDAY', 'SUNDAY') THEN

 DBMS_OUTPUT.put_line('It''s the weekend!');

 ELSE

 DBMS_OUTPUT.put_line('It''s not the weekend yet!');

 END IF;

END;

/

First, the expression between the IF and the THEN is evaluated. If that expression equates to TRUE the
code between the THEN and the ELSE is performed. If the expression equates to FALSE the code
between the ELSE and the END IF is performed. The IF-THEN-ELSE statement can be extended to
cope with multiple decisions by using the ELSIF keyword. The example below uses this extended form
to produce a different message for Saturday and Sunday.

SET SERVEROUTPUT ON

DECLARE

 l_day VARCHAR2(10);

BEGIN

 l_day := TRIM(TO_CHAR(SYSDATE, 'DAY'));

 IF l_day = 'SATURDAY' THEN

 DBMS_OUTPUT.put_line('The weekend has just started!');

 ELSIF l_day = 'SUNDAY' THEN

 DBMS_OUTPUT.put_line('The weekend is nearly over!');

 ELSE

 DBMS_OUTPUT.put_line('It''s not the weekend yet!');

 END IF;

END;

/

SQL CASE expressions were introduced in the later releases of Oracle 8i, but Oracle 9i included support
for CASE statements in PL/SQL for the first time. The CASE statement is the natural replacement for

Department of Information Technology Page 117

large IF-THEN-ELSIF-ELSE statements. The following code gives an example of a
matched CASE statement.

SET SERVEROUTPUT ON

DECLARE

 l_day VARCHAR2(10);

BEGIN

 l_day := TRIM(TO_CHAR(SYSDATE, 'DAY'));

 CASE l_day

 WHEN 'SATURDAY' THEN

 DBMS_OUTPUT.put_line('The weekend has just started!');

 WHEN 'SUNDAY' THEN

 DBMS_OUTPUT.put_line('The weekend is nearly over!');

 ELSE

 DBMS_OUTPUT.put_line('It''s not the weekend yet!');

 END CASE;

END;

/

The WHEN clauses of a matched CASE statement simply state the value which is to be compared. If the
value of the variable specified after the CASE keyword matches this comparison value the code after
the THEN keyword is performed.

A searched CASE statement has a slightly different format, with each WHEN clause containing a full
expression, as shown below.

SET SERVEROUTPUT ON

DECLARE

 l_day VARCHAR2(10);

BEGIN

 l_day := TRIM(TO_CHAR(SYSDATE, 'DAY'));

Department of Information Technology Page 118

 CASE

 WHEN l_day = 'SATURDAY' THEN

 DBMS_OUTPUT.put_line('The weekend has just started!');

 WHEN l_day = 'SUNDAY' THEN

 DBMS_OUTPUT.put_line('The weekend is nearly over!');

 ELSE

 DBMS_OUTPUT.put_line('It''s not the weekend yet!');

 END CASE;

END;

/

Looping Statements

Loops allow sections of code to be processed multiple times. In its most basic form a loop consists of
the LOOP and END LOOP statement, but this form is of little use as the loop will run forever.

BEGIN

 LOOP

 NULL;

 END LOOP;

END;

/

Typically you would expect to define an end condition for the loop using the EXIT WHEN statement
along with a Boolean expression. When the expression equates to true the loop stops. The example
below uses this syntax to pint out numbers from 1 to 5.

SET SERVEROUTPUT ON

DECLARE

 i NUMBER := 1;

BEGIN

 LOOP

Department of Information Technology Page 119

 EXIT WHEN i > 5;

 DBMS_OUTPUT.put_line(i);

 i := i + 1;

 END LOOP;

END;

/

The placement of the EXIT WHEN statement can affect the processing inside the loop. For example,
placing it at the start of the loop means the code within the loop may be executed "0 to many" times, like
a while-do loop in other language. Placing the EXIT WHEN at the end of the loop means the code within
the loop may be executed "1 to many" times, like a do-while loop in other languages.

The FOR-LOOP statement allows code within the loop to be repeated a specified number of times based
on the lower and upper bounds specified in the statement. The example below shows how the previous
example could be recorded to use a FOR-LOOP statement.

SET SERVEROUTPUT ON

BEGIN

 FOR i IN 1 .. 5 LOOP

 DBMS_OUTPUT.put_line(i);

 END LOOP;

END;

/

The WHILE-LOOP statement allows code within the loop to be repeated until a specified expression
equates to TRUE. The following example shows how the previous examples can be re-coded to use
a WHILE-LOOP statement.

SET SERVEROUTPUT ON

DECLARE

 i NUMBER := 1;

BEGIN

 WHILE i <= 5 LOOP

 DBMS_OUTPUT.put_line(i);

Department of Information Technology Page 120

 i := i + 1;

 END LOOP;

END;

/

In addition to these loops a special cursor FOR-LOOP is available as seen previously.

GOTO

The GOTO statement allows a program to branch unconditionally to a predefined label. The following
example uses the GOTO statement to repeat the functionality of the examples in the previous section.

SET SERVEROUTPUT ON

DECLARE

 i NUMBER := 1;

BEGIN

 LOOP

 IF i > 5 THEN

 GOTO exit_from_loop;

 END IF;

 DBMS_OUTPUT.put_line(i);

 i := i + 1;

 END LOOP;

 << exit_from_loop >>

 NULL;

END;

/

In this example the GOTO has been made conditional by surrounding it with an IF statement. When
the GOTO is called the program execution immediately jumps to the appropriate label, defined using
double-angled brackets.

Department of Information Technology Page 121

Procedures, Functions and Packages

Procedures and functions allow code to be named and stored in the database, making code reuse simpler
and more efficient. Procedures and functions still retain the block format, but the DECLARE keyword is
replaced by PROCEDURE or FUNCTION definitions, which are similar except for the additional return
type definition for a function. The following procedure displays numbers between upper and lower
bounds defined by two parameters, then shows the output when it's run.

CREATE OR REPLACE PROCEDURE display_numbers (

 p_lower IN NUMBER,

 p_upper IN NUMBER)

AS

BEGIN

 FOR i IN p_lower .. p_upper LOOP

 DBMS_OUTPUT.put_line(i);

 END LOOP;

END;

/

SET SERVEROUTPUT ON

EXECUTE display_numbers(2, 6);

2

3

4

5

6

PL/SQL procedure successfully completed.

SQL>

The following function returns the difference between upper and lower bounds defined by two
parameters.

Department of Information Technology Page 122

CREATE OR REPLACE FUNCTION difference (

 p_lower IN NUMBER,

 p_upper IN NUMBER)

 RETURN NUMBER

AS

BEGIN

 RETURN p_upper - p_lower;

END;

/

VARIABLE l_result NUMBER

BEGIN

 :l_result := difference(2, 6);

END;

/

PL/SQL procedure successfully completed.

PRINT l_result

 L_RESULT

 4

SQL>

Packages allow related code, along with supporting types, variables and cursors, to be grouped together.
The package is made up of a specification that defines the external interface of the package, and a body
that contains all the implementation code. The following code shows how the previous procedure and
function could be grouped into a package.

Department of Information Technology Page 123

CREATE OR REPLACE PACKAGE my_package AS

PROCEDURE display_numbers (

 p_lower IN NUMBER,

 p_upper IN NUMBER);

FUNCTION difference (

 p_lower IN NUMBER,

 p_upper IN NUMBER)

 RETURN NUMBER;

END;

/

CREATE OR REPLACE PACKAGE BODY my_package AS

PROCEDURE display_numbers (

 p_lower IN NUMBER,

 p_upper IN NUMBER)

AS

BEGIN

 FOR i IN p_lower .. p_upper LOOP

 DBMS_OUTPUT.put_line(i);

 END LOOP;

END;

FUNCTION difference (

 p_lower IN NUMBER,

Department of Information Technology Page 124

 p_upper IN NUMBER)

 RETURN NUMBER

AS

BEGIN

 RETURN p_upper - p_lower;

END;

END;

/

Once the package specification and body are compiled they can be executed as before, provided the
procedure and function names are prefixed with the package name.

SET SERVEROUTPUT ON

EXECUTE my_package.display_numbers(2, 6);

2

3

4

5

6

PL/SQL procedure successfully completed.

VARIABLE l_result NUMBER

BEGIN

 :l_result := my_package.difference(2, 6);

END;

/

PL/SQL procedure successfully completed.

Department of Information Technology Page 125

PRINT l_result

 L_RESULT

 4

SQL>

Since the package specification defines the interface to the package, the implementation within the
package body can be modified without invalidating any dependent code, thus breaking complex
dependency chains. A call to any element in the package causes the whole package to be loaded into
memory, improving performance compared to loading several individual procedures and functions.

Records

Record types are composite data structures, or groups of data elements, each with its own definition.
Records can be used to mimic the row structures of tables and cursors, or as a convenient was to pass
data between subprograms without listing large number of parameters.

When a record type must match a particular table or cursor structure it can be defined using
the %ROWTYPE attribute, removing the need to define each column within the record manually.
Alternatively, the record can be specified manually. The following code provides an example of how
records can be declared and used in PL/SQL.

SET SERVEROUTPUT ON

DECLARE

 -- Define a record type manually.

 TYPE t_all_users_record IS RECORD (

 username VARCHAR2(30),

 user_id NUMBER,

 created DATE

);

 -- Declare record variables using the manual and %ROWTYPE methods.

Department of Information Technology Page 126

 l_all_users_record_1 t_all_users_record;

 l_all_users_record_2 all_users%ROWTYPE;

BEGIN

 -- Return some data into once record structure.

 SELECT *

 INTO l_all_users_record_1

 FROM all_users

 WHERE username = 'SYS';

 -- Display the contents of the first record.

 DBMS_OUTPUT.put_line('l_all_users_record_1.username=' ||

 l_all_users_record_1.username);

 DBMS_OUTPUT.put_line('l_all_users_record_1.user_id=' ||

 l_all_users_record_1.user_id);

 DBMS_OUTPUT.put_line('l_all_users_record_1.created=' ||

 l_all_users_record_1.created);

 -- Assign the values to the second record structure in a single operation.

 l_all_users_record_2 := l_all_users_record_1;

 -- Display the contents of the second record.

 DBMS_OUTPUT.put_line('l_all_users_record_2.username=' ||

 l_all_users_record_2.username);

 DBMS_OUTPUT.put_line('l_all_users_record_2.user_id=' ||

 l_all_users_record_2.user_id);

 DBMS_OUTPUT.put_line('l_all_users_record_2.created=' ||

 l_all_users_record_2.created);

Department of Information Technology Page 127

 l_all_users_record_1 := NULL;

 -- Display the contents of the first record after deletion.

 DBMS_OUTPUT.put_line('l_all_users_record_1.username=' ||

 l_all_users_record_1.username);

 DBMS_OUTPUT.put_line('l_all_users_record_1.user_id=' ||

 l_all_users_record_1.user_id);

 DBMS_OUTPUT.put_line('l_all_users_record_1.created=' ||

 l_all_users_record_1.created);

END;

/

l_all_users_record_1.username=SYS

l_all_users_record_1.user_id=0

l_all_users_record_1.created=18-MAR-2004 08:02:17

l_all_users_record_2.username=SYS

l_all_users_record_2.user_id=0

l_all_users_record_2.created=18-MAR-2004 08:02:17

l_all_users_record_1.username=

l_all_users_record_1.user_id=

l_all_users_record_1.created=

PL/SQL procedure successfully completed.

SQL>

Notice how the records can be assigned to each other directly, and how all elements within a record can
be initialized with a single assignment of a NULL value.

Department of Information Technology Page 128

Object Types

Oracle implements Objects through the use of TYPE declarations, defined in a similar way to packages.
Unlike packages where the instance of the package is limited to the current session, an instance of an
object type can be stored in the database for later use. The definition of the type contains a comma
separated list of attributes/properties, defined in the same way as package variables, and member
functions/procedures. If a type contains member functions/procedures, the procedural work for these
elements is defined in the TYPE BODY.

To see how objects can be used let's assume we want to create one to represent a person. In this case, a
person is defined by three attributes (first_name, last_name, date_of_birth). We would also like to be
able to return the age of the person, so this is included as a member function (get_age).

CREATE OR REPLACE TYPE t_person AS OBJECT (

 first_name VARCHAR2(30),

 last_name VARCHAR2(30),

 date_of_birth DATE,

 MEMBER FUNCTION get_age RETURN NUMBER

);

/

Type created.

SQL>

Next the type body is created to implement the get_age member function.

CREATE OR REPLACE TYPE BODY t_person AS

 MEMBER FUNCTION get_age RETURN NUMBER AS

 BEGIN

 RETURN TRUNC(MONTHS_BETWEEN(SYSDATE, date_of_birth)/12);

 END get_age;

END;

/

Department of Information Technology Page 129

Type body created.

SQL>

Once the object is defined it can be used to define a column in a database table.

CREATE TABLE people (

 id NUMBER(10) NOT NULL,

 person t_person

);

Table created.

SQL>

To insert data into the PEOPLE table we must use the t_person() constructor. This can be done as part of
a regular DML statement, or using PL/SQL.

INSERT INTO people (id, person)

VALUES (1, t_person('John', 'Doe', TO_DATE('01/01/2000','DD/MM/YYYY')));

1 row created.

COMMIT;

Commit complete.

DECLARE

 l_person t_person;

BEGIN

 l_person := t_person('Jane','Doe', TO_DATE('01/01/2001','DD/MM/YYYY'));

Department of Information Technology Page 130

 INSERT INTO people (id, person)

 VALUES (2, l_person);

 COMMIT;

END;

/

PL/SQL procedure successfully completed.

SQL>

Once the data is loaded it can be queried using the dot notation.

alias.column.attibute

alias.column.function()

The query below shows this in action.

SELECT p.id,

 p.person.first_name,

 p.person.get_age() AS age

FROM people p;

 ID PERSON.FIRST_NAME AGE

---------- ------------------------------ ----------

 1 John 5

 2 Jane 4

2 rows selected.

SQL>

Department of Information Technology Page 131

Collections

Oracle uses collections in PL/SQL the same way other languages use arrays.

Triggers

Database triggers are stored programs associated with a specific table, view or system events, such that
when the specific event occurs the associated code is executed. Triggers can be used to validate data
entry, log specific events, perform maintenance tasks or perform additional application logic. The
following example shows how a table trigger could be used to keep an audit of update actions.

-- Create and populate an items table and creat an audit log table.

CREATE TABLE items (

 id NUMBER(10),

 description VARCHAR2(50),

 price NUMBER(10,2),

 CONSTRAINT items_pk PRIMARY KEY (id)

);

CREATE SEQUENCE items_seq;

INSERT INTO items (id, description, price) VALUES (items_seq.NEXTVAL, 'PC', 399.99);

CREATE TABLE items_audit_log (

 id NUMBER(10),

 item_id NUMBER(10),

 description VARCHAR2(50),

 old_price NUMBER(10,2),

 new_price NUMBER(10,2),

 log_date DATE,

 CONSTRAINT items_audit_log_pk PRIMARY KEY (id)

);

Department of Information Technology Page 132

CREATE SEQUENCE items_audit_log_seq;

-- Create a trigger to log price changes of items.

CREATE OR REPLACE TRIGGER items_aru_trg

 AFTER UPDATE OF price ON items

 FOR EACH ROW

BEGIN

 INSERT INTO items_audit_log (id, item_id, description, old_price, new_price, log_date)

 VALUES (items_audit_log_seq.NEXTVAL, :new.id, :new.description, :old.price, :new.price, SYSDATE);

END;

/

-- Check the current data in the audit table, should be no rows.

COLUMN description FORMAT A10

SELECT * FROM items_audit_log;

no rows selected

-- Update the price of an item.

UPDATE items

SET price = 499.99

WHERE id = 1;

-- Check the audit table again.

COLUMN description FORMAT A10

SELECT * FROM items_audit_log;

 ID ITEM_ID DESCRIPTIO OLD_PRICE NEW_PRICE LOG_DATE

---------- ---------- ---------- ---------- ---------- --------------------

Department of Information Technology Page 133

 1 1 PC 399.99 499.99 19-AUG-2005 10:14:11

1 row selected.

-- Clean up.

DROP TABLE items_audit_log;

DROP TABLE items;

From this you can see that the trigger fired when the price of the record was updated, allowing us to
audit the action.

The following trigger sets the current_schema parameter for each session logging on as the
APP_LOGON user, making the default schema that of the SCHEMA_OWNER user.

CREATE OR REPLACE TRIGGER APP_LOGON.after_logon_trg AFTER

LOGON ON APP_LOGON.SCHEMA BEGIN

 EXECUTE IMMEDIATE 'ALTER SESSION SET current_schema=SCHEMA_OWNER';

END;

/

Error Handling

When PL/SQL detects an error normal execution stops and an exception is raised, which can be captured
and processed within the block by the exception handler if it is present. If the block does not contain an
exception handler section the exception propagates outward to each successive block until a suitable
exception handler is found, or the exception is presented to the client application.

Oracle provides many predefined exceptions for common error conditions,
like NO_DATA_FOUND when a SELECT ... INTO statement returns no rows. The following example
shows how exceptions are trapped using the appropriate exception handler. Assume we want to return
the username associated with a specific user_id value, we might do the following.

SET SERVEROUTPUT ON

DECLARE

 l_user_id all_users.username%TYPE := 0;

 l_username all_users.username%TYPE;

Department of Information Technology Page 134

BEGIN

 SELECT username

 INTO l_username

 FROM all_users

 WHERE user_id = l_user_id;

 DBMS_OUTPUT.put_line('l_username=' || l_username);

END;

/

l_username=SYS

PL/SQL procedure successfully completed.

SQL>

That works fine for user_id values that exist, but look what happens if we use one that doesn't.

SET SERVEROUTPUT ON

DECLARE

 l_user_id all_users.username%TYPE := 999999;

 l_username all_users.username%TYPE;

BEGIN

 SELECT username

 INTO l_username

 FROM all_users

 WHERE user_id = l_user_id;

 DBMS_OUTPUT.put_line('l_username=' || l_username);

END;

/

Department of Information Technology Page 135

DECLARE

*

ERROR at line 1:

ORA-01403: no data found

ORA-06512: at line 5

SQL>

This is not a very user friendly message, so we can trap this error and produce something more
meaningful to the users.

SET SERVEROUTPUT ON

DECLARE

 l_user_id all_users.username%TYPE := 999999;

 l_username all_users.username%TYPE;

BEGIN

 SELECT username

 INTO l_username

 FROM all_users

 WHERE user_id = l_user_id;

 DBMS_OUTPUT.put_line('l_username=' || l_username);

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 DBMS_OUTPUT.put_line('No users have a user_id=' || l_user_id);

END;

/

No users have a user_id=999999

PL/SQL procedure successfully completed.

Department of Information Technology Page 136

SQL>

It is possible to declare your own exceptions for application specific errors, or associate them with
Oracle "ORA-" messages, which are executed using the RAISE statement. The example below builds on
the previous example using a user defined exception to signal an application specific error.

SET SERVEROUTPUT ON

DECLARE

 l_user_id all_users.username%TYPE := 0;

 l_username all_users.username%TYPE;

 ex_forbidden_users EXCEPTION;

BEGIN

 SELECT username

 INTO l_username

 FROM all_users

 WHERE user_id = l_user_id;

 -- Signal an error is the SYS or SYSTEM users are queried.

 IF l_username IN ('SYS', 'SYSTEM') THEN

 RAISE ex_forbidden_users;

 END IF;

 DBMS_OUTPUT.put_line('l_username=' || l_username);

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 DBMS_OUTPUT.put_line('No users have a user_id=' || l_user_id);

 WHEN ex_forbidden_users THEN

 DBMS_OUTPUT.put_line('Don''t mess with the ' || l_username || ' user, it is forbidden!');

END;

Department of Information Technology

/

Don't mess with the SYS user, it is forbidden!

PL/SQL procedure successfully completed.

SQL>

The code still handles users that don't
either SYS or SYSTEM.

The use of PL/SQL Application Program Interfaces (APIs) should be compulsory. Ideally, client
application developers should have no access to tables, but instead acces
possibly views if absolutely necessary.

This has a number of beneficial effects, including:

• Security and auditing mechanisms can be implemented and maintained at the database level, with little or
no impact on the client application layer.

• It removes the need for triggers as all inserts, updates and deletes are wrapped in APIs. Instead of writing
triggers you simply add the code into the API.

Department of Information Technology

Don't mess with the SYS user, it is forbidden!

PL/SQL procedure successfully completed.

The code still handles users that don't exist, but now it also raises an exception if the user returned is

use of PL/SQL Application Program Interfaces (APIs) should be compulsory. Ideally, client
application developers should have no access to tables, but instead access data via PL/SQL APIs, or
possibly views if absolutely necessary.

This has a number of beneficial effects, including:

Security and auditing mechanisms can be implemented and maintained at the database level, with little or
ation layer.

It removes the need for triggers as all inserts, updates and deletes are wrapped in APIs. Instead of writing
triggers you simply add the code into the API.

Page 137

exist, but now it also raises an exception if the user returned is

use of PL/SQL Application Program Interfaces (APIs) should be compulsory. Ideally, client
s data via PL/SQL APIs, or

Security and auditing mechanisms can be implemented and maintained at the database level, with little or

It removes the need for triggers as all inserts, updates and deletes are wrapped in APIs. Instead of writing

Department of Information Technology Page 138

• It prevents people who don't understand SQL writing inefficient queries. All SQL should be written by
PL/SQL developers or DBAs, reducing the likelihood of bad queries.

• The underlying structure of the database is hidden from the client application developers, so it hides
complexity and structural changes can be made without client applications being changed.

• The API implementation can be altered and tuned without affecting the client application layer. Reducing
the need for redeployments of applications.

• The same APIs are available to all applications that access the database. Resulting in reduced duplication
of effort.

This sounds a little extreme, but this approach has paid dividends for me again and again. Let's elaborate
on these points to explain why this approach is so successful.

It's a sad fact that auditing and security are often only brought into focus after something bad has
happened. Having the ability to revise and refine these features is a massive bonus. If this means you
have to re-factor your whole application you are going to have problems. If on the other hand it can be
revised in your API layer you are on to a winner.

Over-reliance on database triggers is a bad thing in my opinion. It seems every company I've worked for
has at one time or another used triggers to patch a “hole” or implement some business functionality in
their application. Every time I see this my heart sinks. Invariably these triggers get disabled by accident
and bits of functionality go AWOL, or people forget they exist and recode some of their functionality
elsewhere in the application. It's far easier to wrap the transactional processing in an API that includes
all necessary functionality, thereby removing the need for table triggers entirely.

Many client application developers have to be able to work with several database engines, and as a result
are not always highly proficient at coding against Oracle databases. Added to that, some development
architectures such as J2EE positively discourage developers from working directly with the database.
You wouldn't ask an inexperienced person to fix your car, so why would you ask one to write SQL for
you? Abstracting the SQL in an API leaves the client application developers to do what they do best,
while your PL/SQL programmers can write the most efficient SQL and PL/SQL possible.

During the lifetime of an application many changes can occur in the physical implementation of the
database. It's nice to think that the design will be perfected before application development starts, but in
reality this seldom seems to be the case. The use of APIs abstracts the developers from the physical
implementation of the database, allowing change without impacting on the application.

In the same way, it is not possible to foresee all possible performance problems during the coding phase
of an application. Many times developers will write and test code with unrealistic data, only to find the
code that was working perfectly in a development environment works badly in a production
environment. If the data manipulation layer is coded as an API it can be tuned without re-coding
sections of the application, after all the implementation has changed, not the interface.

A problem I see time and time again is that companies invest heavily in coding their business logic into
a middle tier layer on an application server, then want to perform data loads either directly into the
database, or via a tool that will not link to their middle tier application. As a result they have to re-code
sections of their business logic into PL/SQL or some other client language. Remember, it's not just the
duplication of effort during the coding, but also the subsequent maintenance. Since every language
worth using can speak to Oracle via OCI, JDBC, ODBC or web services, it makes sense to keep your
logic in the database and let every application or data load use the same programming investment.

Department of Information Technology Page 139

Assignment

1. Write a simple PL/SQL script that displays “Hello World”.

2. Write a PL/SQL stored procedure to display “Hello World”.

3. Write a PL/SQL script that performs simple arithmetic like Addition, Subtraction,
and Multiplication & Division of input numbers.

4. Create two tables as shown below:
Table 1 : product (product_id, product_name, supplier_name, unit_price)
Table 2: product_price_history(product_id, product_name, supplier_name,
unit_price)
Insert appropriate data into Table 1 i.e. the “product” table.
Now write a PL/SQL trigger that automatically copies a row from product table to
product_price_history table whenever the unit price of a product is changed in the
product table.
Note: „product‟ table contains new updated value of unit price while
„product_price_history‟ table contains the old value.

5. Write a PL-SQL script to compare three given numbers and display them in
ascending order.

6. Create the following table:
Emp(E_ID, E_Name, E_Dept, E_Salary)
Insert appropriate data into Emp table.
The attribute E_Dept contains values like (I.T. , Accounts, Sales)..
Write a PL-SQL cursor that increments the salary of employees of I.T. Dept. by
20%.

